
Task Administration
via Peer-to-Peer Communication

Yasin Sahin*, Sven Oberwalder, Fabian Hitzenberger, Karl Dopplinger, Raphael Ackerl, Julian Kerer
Department of Computer Science

HTL Wiener Neustadt
Wiener Neustadt, Austria

*Corresponding author email: sahin.yasin@student.htlwrn.ac.at

Abstract—Time is a very substantial aspect both in the Botball
competition and in various automation tasks. The speed at which
the machines operate, and thus the efficiency, can be increased by
a both task and time optimized cooperation between them. This
work proposes a prototype of a novel library called Task Ad-
ministration Data Exchange Library (TADElib) which provides
task coordination between robots, machines, and other types
of devices. Furthermore, the analysis of conducted experiments,
which are designed within the Botball environment, shows the
increase in efficiency.

Index Terms—task, administration, communication, multi-
robot

I. INTRODUCTION

In most scenarios one robot alone could be sufficient to
complete a required task. However, having more robots work-
ing together may have more advantages, particularly when the
task contains more than one objective, similar to the Botball
competition. For example, the task can be split up among
the robots, so that the task can be finished more quickly [1].
The main problem of working with multiple robots is that
they must be coordinated in advance and work in a coherent
manner. Otherwise, they might run into each other, trying to
accomplish the same job, or hinder each other in a different
way. While this problem can be solved statically, a dynamic
task allocation has way more benefits:

It is possible that there could be the need to temporarily
pause a task, if, for example, one of the robots detects that
another robot may interfere with its current task. Additionally,
through effective management, one can detect whether the
output of accomplished tasks is sufficient, or a plan B should
be executed. Another benefit could be, the possibility of
perceiving execution errors and make other participants of the
system help out the machine in need, if the library is supported
by various algorithms.

For the reasons mentioned above, this study aimed to
develop a library that serves the purpose of handling the
communication and task management between participants of
a system. This library does not engage with the implementa-
tion of algorithms, which detect possible execution errors or
other interferences. The aim of this study is to evaluate the
effectiveness of TADElib in facilitating task coordination and
increasing efficiency among multiple robots, especially in the
Botball competition.

Throughout this paper the abbreviation TADE (= Task
Administration Data Exchange) will be used to refer to the
process of exchanging task administration data. It is also
necessary to clarify what is exactly meant by the term task: It
is used to refer to an activity conducted by a machine which
has a certain output. What functions a certain task contains is
specified by the user.

II. LITERATURE REVIEW

An important factor for TADElib is a dynamic task allo-
cation. A dynamic task allocation should be used to increase
the overall performance of a multi-robot system (MRS), which
typically means to minimize the overall execution time as K.
Lerman, et al. stated in their study [2].

As of today, many algorithms and tools have been pro-
posed and developed. Moreover, there are numerous works
and studies which deal with the concept of MRS and their
optimization. For example, A. T. Tolmidis and L. Petrou
[3] describe an auction-based algorithm for optimizing multi-
objective task allocation problems, in which the robots evalu-
ate the bids assigned to each task. Another approach, the so
called multi-objective particle swarm optimisation (MOPSO)
based algorithm, takes account of many instances, inter alia
task execution cost and transferring time, for an efficient task
allocation [4].

Furthermore, in [5] Robot Operating System (ROS) is pre-
sented as a useful tool, which enables robots to communicate
with each other. The study shows that ROS can be used
efficiently to create a collaborative environment for robots.

Considering the works above, there have been several revo-
lutionary achievements in the field of MRS. This prototype of
TADElib proposes a manifestation of a simplified version of
the MOPSO-based approach which uses only one instance to
evaluate received tasks and a novel package protocol. Never-
theless, there have not been any studies conducted regarding
handling errors, which may occur during crucial tasks.

III. PROJECT SETUP

In this chapter tools which are used for the development of
the TADElib prototype are introduced and explained. Relevant
information and the version number for each tool are specified
within the table presented in Fig. 2. Most of them are used in
combination with the programming language C++.



A. Threading

A machine should be able to continue executing a task while
still processing and sending TADE requests in the background.
Therefore, TADElib must support threading. Threading is also
used to easily control operations: One task is assigned to one
thread to simply start, pause, resume, and terminate it. How it
was exactly used is further described in IV-E. The authors
chose the C++ library called “Threading” for the required
functionalities.

B. CMake

CMake manages the compiler-independent build process
of the TADElib. It produces a native build environment that
assembles the executable automatically [6]. The authors used
CMake to compile and build the TADElib.

C. Sockets

All members of the system are connected over a net-
work, therefore Sockets were used to send TADE packages
over the given connection. For this purpose the C++ header
“sys/socket.h” is also included in TADElib.

D. Wombat

The KIPR Wombat was used for the basic robot construction
shown in Fig. 1. The network card inside the Wombat enables
it to host or connect to a network so that communication
between robots can take place.

Fig. 1: A simple robot made from Botball parts and a KIPR
Wombat

Fig. 2: This table depicts our project setup and specifies the
main tools used for the development of TADElib.

Fig. 3: A visual description of the correlation between partic-
ipants. Note that the terms TST and TCT will be explained in
chapter IV-E.

IV. TASK ADMINISTRATION DATA EXCHANGE

A. Concept

As shown in Fig. 3, all participants in the system have their
own jobs and the arrows indicate the correlations between
them, allowing for a TADE between all devices. Within the
system, there is an administrator that can be designated by
the user and has the ability to send privileged TADE requests.
The administrator is also responsible for calculating the total
output and deciding whether a change in the plan should be
made if the output falls below the expected minimum. In order
for this to occur, all recorded output from worker devices must
be transmitted to the administrator device, and a new plan can
be established via privileged requests. An unprivileged TADE
from the administrator will be treated like a regular TADE
from any other device, and may be declined by the receiving
participant. In the following chapter, the structure of a TADE
package will be explained.

B. Structure

TADE packages have the following types, which are de-
termined by the first digit of the TADE ID. (Note that the
parameter “importance” will be explained in chapter IV-C):

• Type 0: (warning TADE) A device needs another device
to pause (P) or even terminate (T) a specified task. If
no tasks are specified, then all tasks, which are currently
executed by the other device, are targeted.
{tade id: “0xxx xxx”, importance, mode: “P”/”T“,

[task id]}
• Type 1: (requesting TADE) A device requests another

machine to perform a certain task. It can be decided
whether the task needs to be executed simultaneously
(S) with the currently executed ones, the task should
be scheduled (SC) and conducted after the current ones
are finished, current tasks should be paused (P) or even
terminated (T).
{tade id: “1xxx xxx”, importance, task id, mode:

“S”/”SC”/”P”/”T”}
• Type 2: (reporting TADE) The reporting TADE is used

to report output and other data to other devices (mostly
to the admin).



{tade id: “2xxx xxx”, [output], [info]}
• Type 3: (reassuring TADE) A device reports to another

one that a TADE 1 task no longer needs to be executed.
Additionally, paused tasks by a type 0 can also be
resumed by transmitting a reassuring TADE.
{tade id: “3xxx xxx”, target tade}

• Type 4: (responding TADE) Finally, type 4 is used to
respond to another TADE, whether it was acknowledged
or not. The responding TADE has the additional function
to check, whether a TADE request was successfully sent
to the recipient.
If the received TADE is privileged, the response attribute
of the respective responding TADE package must be
”ACK”.

{tade id: “4xxx xxx”, target tade, response:
“ACK”/“NAK”}

C. Evaluation

As previously stated, devices may accept or decline TADE
content. In this chapter the evaluation of received TADE
packages is described. As already mentioned, privileged TADE
requests are accepted automatically and therefore do not need
to be evaluated.

All tasks have a hard-coded importance attribute, which is
determined by the user and should be set according to the
anticipated output of the task. If a device starts a TADE
type 0 or 1, which both require an importance attribute,
the attribute should be equal to the importance of the task,
which is supported with this TADE request. The receiving end
compares the importance of the request and of its currently
running tasks. A request will be declined, when its current
tasks are more important.

D. Connection Configuration

For a successful configuration, a connection must be es-
tablished, and all system participants need to be in the same
network, which is hosted by the admin. The device which is
configured as admin has a file named “TADEsys.xml” stored
locally. All other participants send broadcasts so that the
admin can identify them. After a quick handshake between
the admin and worker, the worker alongside its IP-address
and some other information (if necessary) will be registered
into the “TADEsys.xml” file by the admin. Similarly, worker
devices have a “members.xml” file, which is a copy of the
admin’s ” TADEsys.xml ”, with the exception that the admin
is included in it and marked respectively. The “members.xml”
file is updated every time a new participant introduces itself
to the admin. These kinds of updates are reported by a type 2
TADE to all system participants.

E. TADE Processing

There are at least two threads running on a system partici-
pant:

• TADE Control Thread (TCT) is used to receive or send
TADE requests, evaluate them, update TADEsys.xml or

(a) TADE request being denied

(b) TADE request being executed

Fig. 4: Diagram depicting the cooperation between TCT and
TST threads

members.xml, store or use data received from TADE type
2, etc. There is only one TCT allowed in a program.

• Task Specific Threads (TST) are threads which contain a
specific task. A device has already a TST at the start of its
program, which we will refer to as the default TST, and
has the ability to create more of them as well as to assign
tasks to them. TSTs also have an id, which is equivalent
to the TADE-ID, unless the thread is the default TST.
The id of such a thread is always 0.

As you can see in Fig. 4a, the default TST informs the TCT
about its importance value at the beginning of the program.
This allows the TCT to easily compare it with TADE requests’
importance attributes and decide whether a request should be
rejected or executed. A detailed visualisation of a type 1 TADE
request being accepted, whose mode attribute is set to “P”, can
be seen in Fig. 4b.

F. Cryptography

The field of cryptography involves the use of mathematical
algorithms to encrypt and decrypt data, as well as to generate
and verify digital signatures. The goal of cryptography is to
fulfill the key security requirements, such as [7]:



• Authentication: The procedure, in which someone’s iden-
tity is proven

• Confidentiality: Guarantee, that only the intended receiver
has access to the data

• Integrity: Ensuring that the recipient receives the message
in its original form and that the message has not been
manipulated

• Non-repudiation: A method to verify that the message
was truly sent by the sender

Cryptography is essential to ensure the integrity and confi-
dentiality of TADE packages. For the duration of the testing
procedure, no form of encryption between the robots was
used due to simplicity. However, when TADElib is used in
a real world environment, using any form of cryptography is
mandatory [8]. One option for encrypting the communication
between the robots is to use symmetric encryption. It works
by converting plain text into cipher text using a secret key, that
is shared between the robots in the current session. Symmetric
encryption is a reliable and efficient way to protect TADElib
from potential attacks, because it is relatively fast and requires
less computational power than other methods [9].

G. Security Issues

Although the fully developed version of TADElib, which
will use symmetrical encryption, is quite secure, there are
still some security issues that must be addressed. One of
the most significant weaknesses is the connection network
between the robots. It is especially vulnerable against any
type of DoS or DDoS attack [10]. These attacks paralyze
the network, so that the communication is interrupted. In
this case the complete communication would be blocked, and
any sent TADE packages would not be processed properly.
Fortunately, there are several ways to prevent these attacks:
For example, by using a HTTP-based framework [11]. Another
major security problem is the secret key sharing process. The
secret key, which is used for the symmetric encryption, must
be exchanged securely, before the communication can begin.
[12]

V. EXPERIMENTS

A. Using TADElib for increased Efficiency

The basic construction, which can be seen in Fig. 1, is used
to conduct the experiments. In the first scenario, the yellow
cube in the middle of the stack, which is also shown in Fig. 1,
is needed for another task and the two other cubes need to be
stacked. In the first example the robot, which is further referred
to as bot A, is instructed to move the red cube away, remove
the yellow cube from the stack and take the red cube to its
former place and form the required stack.

In the second approach, bot A takes the red cube and moves
it away, while still holding it in its claw. In order for the second
robot, here referred to as bot B, to take the yellow cube away,
it sends a TADE to inform bot B, that it positioned itself
correctly and freed the way to avoid any collisions with it.
Afterwards bot B grabs the yellow cube with its claw and can
continue its previous task. After safely removing the cube,

Fig. 5: This graph shows the time the bots needed to perform
the task for each try in experiment A. The red points represent
a failed execution in which the bot dropped a cube.

bot B sends a reassuring TADE, so that bot A can move the
red cube in its prior position. By using the TADElib, all of
the collisions can be avoided and the whole process is more
efficient, than by using waiting periods for both robots, since
this would result in an unnecessary waste of time.

B. Using TADElib for Error Avoidance

For the second experiment, the same robot construction and
setup from the first experiment was used. Only bot B had
additionally a camera attached to it. In this scenario bot A
drops the red cube at the top of the stack intentionally. After
that, it sends a TADE to bot B, which, after receiving it, tries
to detect the red cube on the ground, grabs it, and places it
back on the stack.

20 runs were executed in total, and 16 of them were suc-
cessful, indicating a significant reduction in the chance of task
failure. In this example, the risk of failing the specified task
was reduced by approximately 75%. These results demonstrate
that TADElib is effective in preventing execution errors.

VI. REAL WORLD APPLICATIONS

Communication between machines, such as robots, cars, and
other types of devices, has the potential to revolutionize the
way we live and work in the future. By enabling them to
exchange information and collaborate with each other, more
efficient and intelligent systems that can perform tasks and
make decisions on our behalf can be created.

One of the main benefits of device communication is the
ability to coordinate and optimize the performance of multiple
devices at once. For example, a fleet of robots working
together on a manufacturing line could communicate with each
other to divide tasks, handle occurring errors, share resources,
and coordinate their movements. This would allow robots to
work more efficiently and effectively, improving the overall
productivity of the manufacturing process.

Similarly, a network of connected cars could communicate
with each other and with traffic infrastructure to optimize
routes, reduce the chance of traffic congestion, and improve
safety. By sharing real-time traffic data and other information,



the cars could make more informed decisions about planning
the route, reducing potential accidents and improve fuel effi-
ciency.

VII. DISCUSSION AND CONCLUSION

As the authors of this paper have proven through both of
the experiments, the current prototype has achieved its goal
to increase the overall performance of a MRS successfully. In
experiment A, the average run with TADE is approximately
two times faster than the average run without TADE. Execu-
tion errors were also reduced to 25%, because bot A held onto
the red cube and therefore minimized the chance to drop it.
While this improvement is significant, it is important to note
that the TADElib is a new technology and the code provided
was not fully optimized for performance. Therefore, further
optimization of the code provided to the TADElib has the
potential to yield even greater performance improvements for
the MRS.

In experiment B, we observed that only 75% of the runs
were successful. While this may suggest that the TADElib
is not a reliable technology, it is important to note that the
failures were not caused by the TADElib itself, but rather by
the code provided to the library. Therefore, it is important
to recognize that the reliability of the TADElib is highly
dependent on the quality of the code provided to it.

Nonetheless, the prototype and even the TADElib itself
needs some improvements as it is almost impossible to im-
plement some applications from chapter VI with TADElib’s
current version.

First of all, unlike the current prototype, TADElib must use a
cryptography method and the TADE network must be secured
enough against network threats, especially if the TADElib is
used for industrial purposes.

Moreover, an extensive system, whose participants can-
not connect to the same network, cannot be configured as
described in chapter IV-D. An example for such a system
would be the application on autonomous cars in chapter VI.
In this case, a TADE request needs to be transmitted from one
participant to another until the message reaches the intended
recipient.

In summary, the TADElib offers a lot of opportunities for
the robotics community and Botball. Although this library
implements basic algorithms developed for the concept of
dynamic task allocation, which is also widely recognised in the
literature, its further developed version would support many
roboticists as well as the competitors of Botball in various
ways.

Further development of TADElib will be continued as a
project for the Botball and robotics community.

ACKNOWLEDGMENTS

The authors of this document would like to thank Dr.
Michael Stifter for his constant support throughout the work
on this paper.

REFERENCES

[1] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art,” Cooperative Robots and Sensor Networks
2015, pp. 31–51, 2015.

[2] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić, “Analysis of
dynamic task allocation in Multi-Robot Systems,” The International
Journal of Robotics Research, vol. 25, no. 3, pp. 225–241, 2006.

[3] A. T. Tolmidis and L. Petrou, ”Multi-objective optimization for Dynamic
Task Allocation in a multi-robot system,” Engineering Applications of
Artificial Intelligence, vol. 26, no. 5-6, pp. 1458–1468, 2013.

[4] F. Ramezani, J. Lu, and F. Hussain, “Task scheduling optimization in
cloud computing applying multi-objective particle swarm optimization,”
Service-Oriented Computing, pp. 237–251, 2013.

[5] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
Proc. ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

[6] “Overview,” CMake. [Online]. Available: https://cmake.org/overview/.
[Accessed: 27-Jan-2023].

[7] A. J. Menezes, V. O. P. C., and S. A. Vanstone, in Handbook of Applied
Cryptography, Boca Raton: CRC Press, 2001, p. 4.

[8] M. Cheminod, L. Durante, and A. Valenzano, “Review of security issues
in Industrial Networks,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, pp. 277–293, 2013.

[9] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini and Y.
Khamayseh, ”Comprehensive study of symmetric key and asymmetric
key encryption algorithms,” 2017 International Conference on Engi-
neering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-7, doi:
10.1109/ICEngTechnol.2017.8308215.

[10] S. A. Arunmozhi and Y. Venkataramani, “DDoS attack and defense
scheme in wireless ad hoc networks,” International Journal of Network
Security Its Applications, vol. 3, no. 3, pp. 182–187, 2011.

[11] M. A. Saleh and A. Abdul Manaf, ”Optimal specifications for a
protective framework against HTTP-based DoS and DDoS attacks,”
2014 International Symposium on Biometrics and Security Technologies
(ISBAST), Kuala Lumpur, Malaysia, 2014, pp. 263-267, doi: 10.1109/IS-
BAST.2014.7013132.

[12] N. Ferguson, B. Schneier, and T. Kohno, Cryptography engineering:
Design principles and practical applications. Indianapolis, IN: Wiley,
2010.


