
Tuning the strategy for a game using Evolutionary
Learning

Borbely Dominik, Fellner Christoph, Siegel Bernhard, Groiß Simon,
Sztavinovscki Jeremy, Steigenberger Julian

Department for Computer Science
Secondary Technical College

Wiener Neustadt, Austria
Email: anubis@robo4you.at

Abstract—In our experience robots in most robotics competi-
tions do not differ much from each other, the biggest advantage
over the opponents lie in tuning parameters like correction
factors and developing a good strategy. However this can be
a challenging and time-consuming task. Therefore, the team has
experimented with evolutionary learning for decision making and
adjusting parameters. Evolutionary learning is a very reliable
and rarely used method based on Charles Darwin’s theory of
natural selection. The purpose of this paper is to determine the
influence of this procedure on the strategy and behaviour of a bot
and the applicability of this algorithm to robotics competitions
by simulating the double elimination task of compAIR 2023
[3]. Through simulations, the efficiency of evolutionary learning
and the use of this method in robotics competitions could be
determined.

I. INTRODUCTION

The last year Anubis experienced that in robotics competi-
tions like Botball 1 robots do not differ much from each other.
Because of this it is necessary to focus on tuning parameters
and developing a good strategy in order to compete against
other teams. However, the preparation time for a competition
is limited, and tuning the parameters through trial and error
takes a lot of time. Because of that instead of trial and error
the idea was to use evolutionary learning to improve accuracy
and reduce time. Evolutionary learning is an algorithm based
on Charles Darwin’s theory of natural selection that precises
parameters over generations. The applicability of this algo-
rithm for robotics competitions was determined by simulating
the Double Elimination Task of the compAIR[3] robotics
competition.

A. Evolutionary Learning

A genetic algorithm [6] like an evolutionary algorithm is
inspired by Charles Darwin’s theory of natural evolution. This
procedure applies the process of natural selection, where the
individuals, that display the best characteristics for survival,
are selected for mating. In this case, at each step, the genetic
algorithm [7] selects the fittest individuals from the current
population to be parents and uses them to produce children

1Botball is a robotics competition developed by kipr for students to use
science, engineering, technology, math, and writing skills to design, build,
program, and document robots in a hands-on project that reinforces their
learning.[2]

for the next generation which inherit the parameter properties
of their parents. What constitutes the fittest individual depends
on the problem the algorithm has to solve - in this case the
generation with the most points scored. After the first gen-
erations, the parameters were significantly adjusted because
the range of values is not yet limited by previous generations.
Over time, due to the continuous generation of children and
the selection of the most valuable individuals, this algorithm
offers an even higher accuracy, as the range of values that
the next generation can take on becomes smaller after each
generation and is based on the parameters of its parents.

II. STATE OF THE ART

Evolutionary Algorithms (EA) and Artificial Intelligence
(AI) were first acknowledged in the 1960’s from pioneers like
Nils A. Barricelli2 Even though almost 70 years passed, mod-
ern researchers are still highly interested in such technologies.
There are various use cases for EA today, such as ”Evolution-
ary Tuning of multiple support vector maschines parameters”
(SVM) [4] which is used for tuning hyperparameter to improve
the outcome for a kernel or ”Grey Wolf Optimizer”[8] which
is capable of imitating the habitat and the hunting behaviour
of a grey wolf by using a new written EA specified for this
experiment. In comparison to the already mentioned papers,
the most distinctive feature that distinguishes ours from the
others is our approach by using a selfmade simulation engine
which is distributable.

III. PROBLEM STATEMENT

To test the applicability of evolutionary learning to robotics
competitions, the Double Elimination (DE) task of compAIR
2022 [3] is simulated. The compAIR is a robotic contest
which first appeared in February 2020. It’s only one of few
Mathematics, Informatics, Natural Science, and Technology
(MINT) based competitions in Austria hosted by robo4you3.
The core idea of the contest is to bring young people into the
MINT division. It consists of two challenges called Seeding

2Nils A. Barricelli was a Norwegian-Italian mathematician who simulated
the evolution of populations of artificial organisms.[9].

3Robo4you is a association founded by Michael Stifter, Harald R. Haber-
stroh and Christian Reischl supported by the Secondary Technical College in
Wiener Neustadt, Austria



(SE) and Double Elimination. For the experiment the concept
of DE is used to demonstrate the effect of evolutionary
learning. In this challenge two teams compete on the same
table for one and a half minutes as displayed in figure 1. The
table has an empty flat bottom and is surrounded by a border.
The starting position of the bots is the opposite corner of each
other. However, in the simulation it is made use of only one
bot to get a clear result of evolutionary learning independent
of the behaviour of the second bot. In addition, the game ran
for only 15 seconds to have a shorter total simulation time.
There are also 100 points awarded for reaching a goal to get
a clearer result for the average points after each generation.

Figure 1. Double-Elimination Board of the compAIR Competition. The goal
is represented by the red circle. The bots are displayed as red rectangles.

The aim is to score more points than the opponent before
time runs out. Teams can obtain points by driving into circular
areas that are randomly generated on the game table. Besides
these goals we added two items that can be collected:

Definition 1 (Teleporter). When the Teleporter is picked up,
the bot gets teleported to a random location. This item can
not be found in the official double elimination tournament
of compAIR. But we implemented it to give the bot more
possibilities to evolve its strategy.

Definition 2 (Oil-spill). The Oil-spill performs as an obstacle.
When the Bot drives through it, the robot spins randomly for
30ms.

IV. THE GENES

The bot starts with a basic strategy that can be adapted
with the help of 5 genes.

1) The first gene is the backwards gene. It determines
whether the bot can drive backwards. This gene can be
a number between 0 and 100. Everything bigger than 50
enables the bot to drive backwards. Everything less than
50 disables it. We chose this range of numbers to give
the algorithm a chance to slowly evolve in one direction.

2) The goal-gene gives the goal a weighting. This genes
values also ranges between 1 and 100 for the algorithm
to slowly evolve.

3) The Teleporter-gene gives the Teleporter a weighting.
This genes values also ranges between 1 and 100 for
the algorithm to slowly evolve .

4) The Oil-spill-gene gives the Oil-spill a weighting. This
genes values also ranges between 1 and 100 for the
algorithm to slowly evolve.

5) The last gene is the speed gene it determines the
maximal speed percentage the bot is able to drive. Since
these are percentage values, the values range between 0
and 100.

These genes will be generated and inherited to the children by
the parent which achieved the most points.

V. DECISION MAKING WITH GENES

During manoeuvring the bot is directly affected by the
weight the genes are giving different items and the goal. The
equation for evaluating the preference of certain items can be
seen in equation 1.

val(w) = 2− w

100
(1)

Figure 2. Equation for estimating the value of items

The variable w stands for the weight the gene generated
for this item. The value val stands for the importance the
collectable gets. Another parameter which is important in
deciding to which item or goal to drive is the distance to
the respective target. So the decision to which object the bot
should drive can be seen in the equation 2.

I = cm ∗ val(w) (2)

Figure 3. Equation for estimating the preference of items

I stands for the preference value the item or goal got
assigned. The bot then moves to the item or goal with the
smallest preference value. An example code for this procedure
can be seen in the following listing 1.

VI. TURNING WITH GENES

If the first gene allows the bot to drive backwards this
can result in a much faster alignment since the bot only has
to rotate for less then 90 degrees. To evaluate the optimal
rotation, the bot calculates a line to the destination and decides
by the gradient how it rotates. If the gradient is bigger than
90 degrees the bot turns until the gradient is 180 degree and
then drives backwards.

VII. EXPERIMENT

For testing the erlang vm [1] is used to run the game
simulation which can be accessed via beam[5]. This simulation
enabled us to set the position and angle of the bot. After
every angle or position update the simulation determined how
many items or goals were currently in the game and if they
don’t exceeded the maximum amount of entities, randomly

2



1 #function for running the game

2 defp run_game(weights,time, name) do

3 #[...]

4

5 # simulates

6 #for a specific time

7 if (time is not over) do

8 #gets the bots position

9 bot = get_Bot()

10 items = sim.get_items(name)

11

12 # calculates the score

13 # of the Items

14 for item in items do

15 type = get_type(item)

16 weight = get_weight(type)

17

18 #add distance

19 score = weight * distance

20 Map.put(item, score)

21 end

22

23 #drives to the Item/goal

24 #with the highest score

25 goal = Highest_score_Item()

26 drive_to(goal)

27 run_game(max_speed, weights, rev, time, name)

28 end

29 end

Listing 1: Example code of function for running the game
and evaluating the weight for items. Source Code: GitHub
repository

spawned a new one. Furthermore, each time a position was
set, a check was made to ascertain whether the change was
valid and whether the bot was within the range of an item or
goal and therefore activated it or scored a point. In addition,
each time the bot collected a goal, an async thread handle
is returned, which the bot had to await. This async thread
handle is used to execute effects of items without prolonging
the server request, so that it remained inaccurate even in the
case of 2 simultaneous bots.

VIII. RESULTS

After the first two generations, there is a clear increase in the
score, as displayed in graph 4. After that the points increase
steadily. Furthermore, a steady increase in points is to be noted
as well.

As expected items which hinder the bot from scoring
points such as the Teleporter and the Oil-spill have decreasing

0 2 4 6 8 10 12

10

20

30

40

50

generations

it
em

v
a
lu
es

400

600

800

1,000

1,200

av
g

po
in

ts

avg
Oilspill

T eleporter

Figure 4. Graph depicting the value of the Oilspill and Teleporter parameters
in relation to the increase of average points

weights over generations. Whereas the speed and goal weight
experience an incline as can be seen in graph 5. The parameter
for driving backwards only fluctuates around the starting value.
This is achieved because the bot drives backwards once the
value is over 50 any other variation in value does not influence
the behavior of the bot.

0 2 4 6 8 10 12
40

60

80

100

generations

it
em

v
a
lu
es

400

600

800

1,000

1,200

av
g

po
in

ts

avg
goal
speed

backwards

Figure 5. Graph depicting the value of the goal and speed parameters in
relation to the increase of average points

IX. CONCLUSION

After the experiment, it can be concluded that using gen-
erational learning to tune parameters is accurate and can be
used in various robotics competitions, such as tuning motor
values for more accurate movement. Although setting up the
simulation can be time consuming, the result allow for more
efficient parameter tuning. In order to use these parameters
effectively outside of the simulation, environmental influences
such as uneven ground must also be taken into account.
However, simulation cannot be used to develop a strategy from
scratch. There must always be a basic idea of what the bot
can do, because it is on this basis that the parameters for the
algorithm to be tuned are selected.

3

https://github.com/if-loop69420/AnubisGit/tree/main/paper/sim_learner
https://github.com/if-loop69420/AnubisGit/tree/main/paper/sim_learner


ACKNOWLEDGEMENT

The authors would like to thank Dr. Michael Stifter,
robo4you and the Secondary Technical College Wiener
Neustadt for the great support in realizing this project.

REFERENCES

[1] Ericson AB. Erlang/OTP Documentation. URL: https://
www.erlang.org/doc/.

[2] Botball. URL: https://www.kipr.org/botball.
[3] CompAIR. URL: https://comp-air.at/.
[4] Frauke Friedrichs and Christian Igel. “Evolutionary tun-

ing of multiple SVM parameters”. In: Neurocomput-
ing 64 (2005). Trends in Neurocomputing: 12th Euro-
pean Symposium on Artificial Neural Networks 2004,
pp. 107–117. ISSN: 0925-2312. DOI: https : / / doi .
org / 10 . 1016 / j . neucom . 2004 . 11 . 022. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0925231204005223.

[5] John Högberg. A brief introduction to BEAM. URL: https:
//www.erlang.org/blog/a-brief-beam-primer/.

[6] Vijini Mallawaarachchi. Introduction to Genetic Algo-
rithms — Including Example Code. URL: https : / /
towardsdatascience . com / introduction - to - genetic -
algorithms-including-example-code-e396e98d8bf3.

[7] Naveen Upreti & Deepti Gupta Manoj Kumar1 Moham-
mad Husian. GENETIC ALGORITHM: REVIEW AND
APPLICATION. URL: https://dx.doi.org/10.2139/ssrn.
3529843.

[8] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and An-
drew Lewis. “Grey Wolf Optimizer”. In: Advances in
Engineering Software 69 (2014), pp. 46–61. ISSN: 0965-
9978. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.
007. URL: https://www.sciencedirect.com/science/article/
pii/S0965997813001853.

[9] institute for advanced study. Nils A. Barricelli. URL:
https://www.ias.edu/scholars/nils-barricelli.

4

https://www.erlang.org/doc/
https://www.erlang.org/doc/
https://www.kipr.org/botball
https://comp-air.at/
https://doi.org/https://doi.org/10.1016/j.neucom.2004.11.022
https://doi.org/https://doi.org/10.1016/j.neucom.2004.11.022
https://www.sciencedirect.com/science/article/pii/S0925231204005223
https://www.sciencedirect.com/science/article/pii/S0925231204005223
https://www.sciencedirect.com/science/article/pii/S0925231204005223
https://www.erlang.org/blog/a-brief-beam-primer/
https://www.erlang.org/blog/a-brief-beam-primer/
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://dx.doi.org/10.2139/ssrn.3529843
https://dx.doi.org/10.2139/ssrn.3529843
https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://www.ias.edu/scholars/nils-barricelli

	Introduction
	Evolutionary Learning

	State of the Art
	Problem Statement
	The genes
	Decision making with genes
	Turning with genes
	Experiment
	Results
	Conclusion

