
compAIR-Autotest
Georg Rohrhofer*, Lukas Haindl, Marcel Schock, Quentin Reisinger

Technical Secondary College
Department of Computer Science
2700 Wiener Neustadt, Austria,

*Corresponding author Email: rohrhofer.georg@student.htlwrn.ac.at

Abstract— Due to the COVID-19 pandemic robotics
competitions in person got canceled. To create a robotics
competition with positive aspects from both, physical and
simulated competitions, robo4you created the compAIR
[3]. To enable the location independent access to tests
under realistic conditions, compAIR-Autotest was created.
The system is not only useful in case of the compAIR,
but also useful in preparation for ECER. Our system is
designed in a way where there are very little limitations
to the fields of application.

I. INTRODUCTION

In order to optimize training exercise for robotics com-
petitions and enable digital access to the laboratory from
everywhere, we designed a solution to enable remote testing.
This system was developed to allow the testing of robots
from home at any time. There is a comparable solution called
”RoBox” [2], which enables ROS-based robots to be simulated
and also physically started over the internet. This system is
not practical in our case, because every participant has to
manually select which robot he wants to use, which means
the teams always have to check if a robot is available before
testing. Our solution is mainly designed the compAIR-Robots.
The compAIR is a robotics competition which was created by
robo4you [5], where all teams use the same robots during the
competition. There is also a publication about implementing a
remote robotics laboratory called ”RELLE [1]”, which enables
users to program and watch their robots from home. Our
solution differs to the existing, by enabling users the access
to the robots, even when they are all occupied.

II. CONCEPT

A. Components

Our System uses the following Components:
• website to upload code

– The website is called compUpload and it provides
the users with the necessary access

• queue
– This queue is used, so multiple test can be started

while the robot is running
• software to decide which robot works next

– This software component assigns robot their next
task, based on the ones in the queue

• software to run code in docker [8] container

– There has to be a component running on each robot,
which is used to download the users code and to run
it inside a docker container.

• web-server
– This server is used to host compUpload

• robots
– These are the robots which are set up to work with

compAIR-Autotest.
• server for monitoring robots

– In order to know which robots are currently in use,
our system needs to monitor all robots at all time

• database
– To recover the robot states after a system-crash we

save all states in a database The database is used to
store the state of all robots at all time.

When using our system, the provider needs a web-server to
host our website where the participants can upload their code,
start the test and view the test results.

B. General

Figure 1. Modeled process for testing



The process, shown in Figure 1, despicts how compAIR-
autotest operates. Teams need to program their robots on
their local machines. When the teams are ready to test their
robots, they need to upload their code to the upload-platform
”compUpload”. When the upload has finished they can now
start their test run. Now the robot drives to its starting position
and downloads the teams code. When everything is ready
the system automatically starts the program. While the robot
is driving on the game table a camera, which views the
game from on top, captures the whole run. After the program
finished or the time ran out, compAIR-autotest evaluates the
test run. Finally our system publishes the results and the video.
Now the teams can see the test run or compare their result to
past runs. If the user wants to watch the video of their run
they can click on the desired run, which opens a new tab
where they can watch the run. The output of their code is
simultaneously simulated next to the video, which means the
output of the users program is shown at the moment the users
program made the output in comparison to the video.

Figure 2. Upload platform statistics

The participants can see on our website, when they did
which test-runs as shown in Figure 2. Through that information
teams can not only track their progress, but also view back
older runs if they want to see how it worked without testing
it again.

C. Upload-platform

Figure 3. Upload platform game mode

Every team gets its own account, which can be used identify
the individual tests. When accessing the website they can
choose if they want to upload their code for seeding or double
elimination as shown in Figure 3. If they choose double
elimination a second robot with either predefined code or with
code from another team will be started.

D. Allocation of a test

In order to provide the teams with a queue, where they can
schedule a new test-run, the ”RabbitMQ” is used. RabbitMQ
is a message broker which allows us to send the tasks over
the network, so the upload-platform and the software to
decide which robot the code is tested on can run on different
machines without the need of manual scaling. The RabbitMQ
also provides also a queue for the messages send over the
network. This queue is what we use to enable the users not
to worry about a free robot to test their code. RabbitMQ
is useful in this particular project because it guaranties that
messages arrive at the target location. If a message cannot be
received the message returns to the queue until the receive
was acknowledged. We use this feature to put messages back
in the queue when no robot is available for testing. RabbitMQ
provides also a layer of security for the messages sent over the
network. Access to the queue is controlled with a username
and password. We use this security, because otherwise we
would need to provide the security for the messages sent.

III. FIELD OF APPLICATION

Our system does not only target the current compAIR-
robots. Due to plans for changing the robots in the near future
our system was developed in a way where there are few
hardware limitations. Our system runs on nearly all robot-
controllers which are based on the Raspberry Pi [5] or similar
systems. Controllers without a network connection or without
the ability to run multiple Programs at once are not compatible
with compAIR-Autotest. For the different robots only the
program to drive back to the starting position has to be
swapped.

A. compAIR

Figure 4. compAIR robot with ArUco [7] Marker

This system is mainly developed for the compAIR, which
uses small robots based on the Raspberry Pi as shown in
Figure 4. The current robots show weaknesses in their physical
design, where the wheels wear down extremely fast and need



to be swapped regularly. If the wheels fail before they get
swapped. No new tasks are allowed to be assigned to the robot.
To stop the allocation of tests to the failed robot a second
program, which monitors the robot is used. Due to the swap
of the robots in the next season, this program is not integrated
in the main testing program and is only used this season. This
workaround receives a copy of the code to test and monitors
the movements over the camera which is also used for the
video. If the movement shown on video differentiates a lot
to the movement suggested by the code, the system stops
the running program and blocks further test allocation. The
robot gets also marked on the website for the administrators,
to show that the robot needs maintenance before it is manually
unlocked.

B. Other robots

Our system can be applied when the robot, supports Python,
docker and a network connection. The code for the robot,
doesn’t have to be written in Python. If the robot uses another
programming language the only thing that has to be changed
is the docker container. The system is implemented in a way
where the individual components are independent from each
other. If other robots than the compAIR-robots are used the
procedure for driving back to the starting position has to
be changed. This procedure is the only one accessing the
movement of the robot and can not be further generalized.

IV. VALUE FOR BOTBALL

A. Changes to Botball

In order to enable to user to run multiple tests, a few
changes have to be made to Botball. The issue with the
use of our system for Botball is that after each run the
game-pieces are in a different state then they used to. In order
to grantee the same initial state each time the test is started
the game-pieces have to be simulated. The compAIR has
already proven, that a robotics competition with simulated
game-pieces can work.

To simulate the game-pieces, the game-table has ArUco-
markers placed around it, so our system can calculate the
initial positions for the game-pieces. In order to track the
pieces when the robots move them to a different position
during the game, the robots are continuously tracked during
the test by multiple cameras. Due to the simulated game-
pieces our system also offers a fully automatic test evaluation.

In Botball not all robots use the same hardware. In this
situation provide the teams with a software where they can
upload a 3D-model of their robot. On this model, locations
where ArUcO-markers are placed, need to be defined. These
markers then get also physically mounted to the Robots. Our
system is now able to track the robots even if they hardware
used varies a lot.

B. Preparation for ECER

Our system can also be used in the preparation phase
for a Botball tournament such as ECER [6]. In this case
compAIR-Autotest can be used to test code as soon as the
construction of the robots is finished. In order to enable
automatic reset of the position of the robot, an ArUco-Marker
has to be placed on top of the robots. To enable teams to
use our system in preparation for ECER the robots need to
get linked directly to the teams user account. Also each team
has to setup the starting position for both robots and save the
position, so compAIR-Autotest can reset the starting position
after a run has finished. If a team wants to test new code,
they need to upload their code to the upload platform and
select if the code is supposed to run on their main or second
robot. If the team is ready they can start the run.

Our system is also advantageous while taking part in a
Botball competition. Due to our system monitoring all robots
at any time, it’s easier to track progress in competition and
fix errors in a short time. Our system offers an automatic
statistics generation. This enables users to see if their new
features have a positive impact on their strategy or if they
should change it. Due to the automatically testing evaluation
the scores get published on the website. These scores are
then displayed in a chart. The scores can also be marked,
which robot achieved them so more specific statistics can be
generated.

C. Course of training

We modeled the process of training divided into setting up
the robots to be used with compAIR-Autotest and the process
of the training itself.

1) Setting up the robots: In order to use our system
the teams first need to set their robots up, so they can
communicate with our software. Both of the teams robots
need an ArUco Marker to locate their position on the table
simular to the compAIR-Robot shown in Figure 4. When the
robots get set up, they need to be set to their starting position.
Our system can then save this starting position automatically
for each robot. Our software also needs to be installed on
every robot, that should be used with our system. When the
robot is first used with compAIR-Autotest the robot needs to
be specified inside our database, so our system knows which
robots are available.

2) Training: If a team wants t o test their code they start
a new run. After the test run our system fully automatically
evaluates the test. The system calculates the achieved points
based on the scoring rules of the year. After the run is
evaluated the points, the code output and the captured video
are shown on the upload platform. There is also different
statistics displayed on the upload platform. Shown statistics
are the change in points in different runs, the average points
and, to ease up the preparation phase and to visualize the
consistency, the standard deviation.



With our current implementation our system can run
python code. When a user wants to test their code, they has
to name the main file ”main.py”, so our system can start it
without asking which one is the main file. All of the source
files need to be compressed in a .zip file. Our robots then
automatically download the .zip file and run it. To enable
our system to execute also programs written in another
programming language, only the dockerfile, with contains
the commands to start the users code, needs to be swapped
out. The dockerfile needs to be changed on every robot,
where the teams want a different programming language.
Due to the independent architecture of our system in regard
of the programming language used, not all robots need to be
programmed in the same programming language.

V. WHY USE OUR SOLUTION

In order to provide a base for comparison with competition
systems, this section is a SWOT-Analysis.

A. Strengths

Our system provides location independent access to the
robots in the laboratory. compAIR-autotest offers not only a
access from everywhere in the world, but also the possibility
for users to start their test run, even if there are no free robots.

B. Weaknesses

In order to fully fulfill the main use-cases of our system
there has to be a lot of teams trying to test their code at
the same time. Due to the main field of application in the
compAIR where there are only a few robots for a lot of teams,
our system is designed to optimized the user experience in
comparison to other solutions, like simply connecting to the
robots over ssh.

C. Opportunities

Our solution offers robo4you to expand the compAIR and
keep costs down. Our system needs only enough robots for
each game mode to function properly. In this case compAIR-
Autotest is necessary, to enable all users the ability to test.
If this system is not used, the robots could be blocked by the
same teams for a long time, so others can’t test their code. Our
system also offers a protection layer for the robots, so teams
can’t manipulate important aspects of the robots operating
system.

D. Threats

Our system does not make a lot of sense if there is only
one team accessing the robots at a given time, because the
cost of deployment is higher than the value in return. In these
cases solutions which enable direct access to robots are more
effective than ours.

VI. CONCLUSION

The COVID-19 pandemic showed, how easily robotics
competition are prevented from taking place. For this reason
the compAIR got developed. Due to it’s design it allows the
users to take part at a robotics competition. Our system is now
the next step to enable a real competition without the need of
human judges. This not only prevents the spread of deceases
in the future, but also eliminates the potential user error by the
judges. In our case we need this system to enable a lot more
teams, to test their code in an environment, that resembles the
same condition as the one used during the competition. Our
system allows also for more dramatic changes to the game-
environment, because teams don’t need to invest the extra cost
of buying or modifying the existing game table from previous
years. Our system enables also a lower entry barrier for the
teams to be a part of the compAIR, because they don’t need
to buy a robot, in order to test their code.

REFERENCES

[1] de Lima, J.P.C., Carlos, L.M., Schardosim Sim˜ao, J.P., Pereira, J.,
Mafra, P.M., and da Silva, J.B. (2016). ”Design and implemen-
tation of a remote lab for teaching programming and robotics.”,
IFAC-PapersOnLine, 49(30), 86–91. doi:10.1016/j.ifacol.2016.11.133.
4th IFAC Symposium on Telematics Applications TA 2016.

[2] The Construct, “RoBox - 24/7 ROS Remote Real Robot Labs”
“https://www.theconstructsim.com/robox”, 2022

[3] Verein zur Förderung von Wissenschaft und Technik an Schulen (F-
WuTS), “Competitive Robotics Reimagined,” https://comp-air.at, 2022

[4] Verein zur Förderung von Wissenschaft und Technik an Schulen (F-
WuTS), “robo4you”, https://robo4you.at, 2022

[5] A. Nayyar and V. Puri, “Raspberry Pi-A Small , Powerful, Cost Effective
and Efficient Form Factor Computer: A Review,” Int. J. Adv. Res.
Comput. Sci. Softw. Eng. 5(12), vol. 5, no. 12, pp. 720–737, 2015

[6] PRIA, “ECER 2023”, https://ecer.pria.at, 2023
[7] Babinec, Andrej & Jurišica, Ladislav & Hubinský, Peter & Duchoň,

František, ”Visual Localization of Mobile Robot Using Artificial Mark-
ers”, 96. 10.1016/j.proeng.2014.12.091, 2014

[8] Docker Inc, “Docker: Accelerated, Containerized Application Develop-
ment”, https://www.docker.com, 2023

[9] VMware, Inc “Messaging that just works - RabbitMQ”,
https://www.rabbitmq.com, 2023


