
Comparing the Viability of Different
Communication Methods for Botball

Jeremy Sztavinovszki, Bernhard Klauninger, Sebastian Kawicher, Karl Dopplinger, Julian Kerer,
Sven Oberwalder, Raphael Ackerl, Timon Koch

Höhere technische Bundes-Lehr- und Versuchsanstalt Wiener Neustadt
Department of Computer Science
2700 Wiener Neustadt, Austria

Abstract—This study focuses on comparing Wi-Fi and Blue-
tooth Low Energy for inter-robot communication in the educa-
tional robot competition Botball, with the aim of improving coor-
dination and efficiency. Throughput, latency, and reliability under
various conditions is critically examined, employing the Rust
programming language for implementation due to its reliability
and performance characteristics. This research aims to assist
participants of the European Conference on Educational Robotics
(ECER) in selecting the most suitable communication protocol
for their robots, thereby improving their strategy effectiveness
and competition performance.

I. INTRODUCTION

Reflecting on past Botball tournaments shows that coordina-
tion between robots is a common issue. This can be as minor as
one robot moving a game piece that the other robot needs later
in the run, or as severe as the robots colliding with each other.
Such issues often result in unexpected outcomes that may not
satisfy the competing team. Over the years, numerous methods
have been developed in Botball to solve these problems.
Simple methods include synchronizing the robots by executing
commands at a specified timestamp. More sophisticated ways
of avoiding collisions use cameras [1]. The focus in this paper
lies on the technologies that can be used in Botball. This
study specifically compares the over-the-air communication
methods Wi-Fi and Bluetooth Low Energy (BLE) in the
environment of Botball. Other viable technologies for inter-
robot communication include LoRa [2] and Zigbee [3], these
are however not relevant in the Botball competition because
the hardware on the Wombat only supports Ethernet, Wi-Fi,
and Bluetooth [4]. Active communication between the robots
enables better coordination. Which information is exchanged
over these technologies is out of scope for this paper.

II. METHODS

This paper heavily evolves around wireless communication
technologies. For this reason most of the highlighted methods
are related to the physical and data link layer of the OSI [5]
model.

A. Wi-Fi

Wi-Fi is a vital technology in modern communication.
It utilizes the 2.4 GHz and 5 GHz bands in the physical
layer. Wi-Fi utilizes various technologies, including Multiple-
Input Multiple-Output (MIMO) to enhance throughput and

performance [6]. Additionally, it employs the family of Wi-
Fi Protected Access (WPA) standards to ensure security [7].

B. Bluetooth Low Energy

Bluetooth Low Energy made its debut in the Bluetooth
specification version 4.0, revolutionizing communications with
energy-efficient, low-power connectivity [8]. BLE introduces
key features ideal for battery-powered devices such as smart
thermostats and the Wombat Controller. It utilizes a method
called advertising to establish connections. Devices actively
broadcast data packets to speed up discovery. Frequency hop-
ping, a key innovation in over-the-air communication also used
in BLE, involves rapid channel switching, reducing interfer-
ence, and ensuring robust connections in diverse environments.

C. L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP)
is one of the protocols of the BLE stack [9]. It is responsible
for multiplexing higher-layer BLE protocols over multiple
connections and segmenting and reassembling data. It opti-
mizes transmission efficiency while accommodating diverse
application requirements. A program can directly use the
L2CAP layer through BlueZ [10] and send data packets sim-
ilarly to sending data through TCP sockets. This protocol has
much less overhead than some of the higher-layer protocols.

D. TCP

The Transmission Control Protocol (TCP) [11] was devel-
oped by Vinton Cerf and Robert Kahn during the 1970s as part
of the ARPANET [12] project. TCP is a connection-oriented
transport protocol that guarantees reliable and ordered data
transmission between devices. To establish a connection, TCP
uses a three-way handshake. It maintains data integrity through
segmentation, sequence numbers, and acknowledgments. TCP
also includes flow control and congestion control mechanisms
to optimize data transfer efficiency.

E. UDP

The User Datagram Protocol (UDP) was developed along-
side TCP with a focus on simplicity and low overhead [13].
It operates as a connectionless protocol, enabling swift data
transmission without the connection establishment and error
recovery overhead of TCP. UDP is suitable for real-time



applications such as multimedia streaming, however, it lacks
sequence numbers and acknowledgments, meaning that it
prioritizes speed over reliability.

F. Rust

Rust [14] is the programming language used to streamline
the development and testing process of the benchmarks this
paper covers. It is widely adopted across diverse program-
ming domains and offers a multitude of compelling fea-
tures. Its robust support for various architectures, efficient
cross-compilation capabilities, and extensive library ecosystem
make it particularly well-suited for our application. In this
work, cross-compiling is significant due to the use of dis-
parate CPU architectures. The Wombat Controller, which uses
aarch64/armv7-l architecture, is different from the x86 64
architecture typically used in modern computers. Rust provides
the necessary versatility to handle these diverse architectural
requirements seamlessly.

III. USEFUL SOFTWARE DESIGN PATTERNS FOR
NETWORK PROGRAMMING

Network programming is a very difficult task because of the
amount of possible errors to take into consideration and the
process of synchronizing procedures taking place on multiple
devices. There are, however, software design patterns that
provide a way to handle this complexity. Following are some
of the patterns made use of for the experiments in this paper.

A. The Actor Pattern

The Actor Pattern [15] is a pattern often used in the context
of concurrent programming. An actor is a building block of
a concurrent computation and can send and receive messages.
Based on these messages, an actor can create more actors,
mutate its internal state, and send a response. A handle is
often implemented alongside the actor. The handle constructs
the actor object and provides wrapper functions to hide the
complexity of the message parsing going on in the background.
An example would be hiding the complex process of sending a
stream of data through UDP or handling requests with a TCP
listener. This pattern is used in all following experiments to
push outgoing data onto a message queue and process a queue
of received packets.

B. The Factory Pattern

Factories [16] are a way of removing the complexity asso-
ciated with instantiating objects. The Factory Pattern is either
implemented by providing a function or creating an interface
through which objects can be created. This pattern is used to
reduce code duplication.

C. Result Monad and Railway Oriented Programming

A monad is a structure that wraps a state or an object
and provides ways to interact with the contained state while
handling possible errors [17]. The failing behavior can be
represented by wrapping the state into a Result Monad. It can
adopt either the error state or the intact state. To interact with
the state, any function must go through a check to determine

if the contained state is intact. If the inner object is intact,
the function is applied, otherwise it is ignored. Many other
programming languages offer similar implementations, such as
std::optional in C++. This pattern is also known as railway-
oriented programming because the running program can be
thought of as two railways, with each function being able to
switch from the intact track to the error track, but not the other
way around.

IV. TESTING DATA THROUGHPUT AND RELIABILITY

In an ideal world, a communication method should provide
a reliable and efficient means of transmitting data. In real-
ity, either reliability or throughput has to be prioritized. To
determine the best method of communication for a specific
need and identify an all-rounder, two tests will be conducted.
Performance and reliability are determined by testing under
optimal and more realistic conditions. Both tests use an echo
server that sends back any data sent to it. As many packets as
possible are exchanged for 60 seconds. The packets contain a
64-bit sequence number in the first 8 bytes and are then filled
with random data until the package reaches the size of the
maximum transmission unit. During this process, the time at
which the packet is sent and received is recorded. If the packet
fails to return, it is considered lost. Additionally, packets that
become corrupted during transit and do not contain a valid
sequence number also contribute to packet loss.

A. Benchmarking Throughput and Reliability in an Optimal
Environment

To ensure optimal test conditions, two Wombats are placed
one game table length (or 240 centimeters) apart from each
other. The experiment is conducted in a room with thick
concrete walls and no other devices to prevent interference and
ensure accurate results. The Wombat’s Wi-Fi module operates
on the 2.4 GHz frequency band and uses a channel width
of 20 MHz. One Wombat acts as a Wi-Fi access point, and
after the other Wombat connects to it, both the TCP and
UDP benchmarks are run. Then, the Wi-Fi interface on both
Wombats is turned off and the BLE tests are run using L2CAP.

B. Testing the Effects of Interference on Throughput and
Reliability

Botball events often have many participants, which lead to
interference when multiple devices broadcast using a shared
medium. Interference occurs when signals collide, corrupt-
ing the data sent. While Wi-Fi and BLE have methods to
counteract these errors, they come at a cost. To measure the
effects of interference on Wi-Fi and BLE, we simulate it. This
requires either many clients or a large antenna to saturate
the entire signal spectrum. Due to the availability of Wi-Fi
and BLE-enabled devices, such as the Wombat, the former
method is more practical and cost-effective. The setup of the
interference test is shown in Figure 1. Each device records sent
and received data over time, providing insight into transfer
rates and packet loss experienced by the devices.



Fig. 1: Setup of the interference test

Optimal Realistic
0

50

100

150

200

76.12

19.42

142.98

39.38

0.4 0.39

Conditions

D
at

a
re

ce
iv

ed
(M

B
)

UDP
TCP
BLE

Fig. 2: Total data successfully transmitted in 60 seconds

V. RESULTS

In Figure 2, Figure 3, and Figure 4 the results of the
conducted experiments delineate the strengths and weaknesses
of each communication method under various conditions.

A. Data Throughput

The data in Figure 2 show that TCP achieved the high-
est throughput, transmitting approximately 143 MB over 60
seconds, in contrast to BLE’s 0.39 MB in the same time.
This highlights the superior data handling capacity of TCP
in optimal conditions. Under more realistic conditions with
interference simulated, the throughput for both TCP and UDP
declines, with TCP achieving 39.38 MB and UDP 19.42 MB.

Optimal Realistic
0

2

4

6

8

10

1.8

7.75

0 00 0

Conditions

Pa
ck

et
L

os
s

(%
)

UDP
TCP
BLE

Fig. 3: Packet loss over 60 seconds

W
i-F

i O
pt

im
al

W
i-F

i R
ea

lis
tic

BL
E

O
pt

im
al

BL
E

Re
al

isi
tic

0

100

200

300

400

500

Distance (m)

L
at

en
cy

(m
s)

Fig. 4: Latency distribution for Wi-Fi and BLE over 100
packets each

BLE’s performance remained nearly constant at 0.39 MB,
signifying its lower susceptibility to interference affecting its
throughput.

B. Packet Loss

Figure 3 illustrates packet loss in optimal and realistic
conditions. While UDP experiences a minor packet loss of
1.80%, TCP and BLE, on the other hand, show exceptional
reliability with zero packet loss. Under the stress of simulated
interference, UDP’s packet loss increases to 7.75%, while
TCP and BLE maintain their resilience with no packet loss.



This highlights the reliability of both TCP and BLE despite
challenging conditions.

C. Latency

In terms of latency, as depicted in Figure 4, Wi-Fi employ-
ing the Internet Control Message Protocol (ICMP), situated
one layer below TCP and UDP, demonstrates significantly
lower average latency under ideal conditions, with an average
of 8.62 ms compared to BLE’s 122.20 ms. Noteworthy is
that the 95th percentile of Wi-Fi’s latency is 13.64 ms, while
BLE’s latency is 133.62 ms. The worst case performance that
can be expected is highlighted by this metric. This pattern
persists under practical conditions, where Wi-Fi’s latency
increases to 19.92 ms, and BLE’s latency experiences a more
pronounced rise to 412.81 ms. Under practical conditions,
the 95th percentile of Wi-Fi’s latency is 38.28 ms, while
BLE’s latency is 445.37 ms. The substantial increase in BLE
latency under practical conditions underscores the impact of
interference. It is important to note that Wi-Fi’s low-latency
performance is comparatively less affected by the simulated
interference.

VI. CONCLUSION

In ideal circumstances, Wi-Fi shows to have superior
throughput and lower latency compared to BLE, making it
the preferred choice for tasks that require high data rates
or time-sensitive operations. Both the TCP protocol and the
BLE protocol exhibits negligible packet loss, highlighting their
reliability for transmitting critical information despite BLE’s
lower data transmission capabilities.

Under conditions with realistic interference levels, TCP
demonstrates resilience by maintaining packet integrity. In
environments where interference is prevalent, TCP over Wi-Fi
is a reliable method of communication. While BLE has limited
throughput, it maintains reliability, making it useful in scenar-
ios where energy efficiency and minimal data transmission are
important. In Botball, where the amount of energy used for
Wi-Fi can be neglected, it is recommended to not use BLE
to transmit data. Since BLE uses the same 2.4 GHz bands as
Wi-Fi it is also affected by interference. Because of the high
amount of interference at tournaments, it is critical for teams
to create backup plans for when data cannot be transmitted
successfully.

For participants in the ECER, the findings encourage teams
to carefully weigh the benefits and drawbacks of implement-
ing bot-to-bot communication in their competitive designs.
Specifically, teams can discern the optimal protocols to employ
based on the specific requirements of their Botball strategies
and the likely environmental conditions during the conference.
This anticipation for interference is vital for enhancing the
reliability and effectiveness of their robots in the dynamic
environment of robotics competitions.

This study underlines the significance of considering en-
vironmental factors such as interference when designing and
testing robot communication systems. As Botball teams strive
for precision and efficiency in their robotic endeavors, the

insights derived from this research offer a pathway to more ef-
fective and reliable robot-to-robot communication, ultimately
enhancing the overall performance in competitions. While
this study delineates the comparative efficacy of Wi-Fi and
BLE in Botball, future research should explore the integration
of adaptive protocols that could dynamically switch between
these methods based on environmental conditions.

ACKNOWLEDGEMENT

The authors would like to thank Michael Stifter, Har-
ald R. Haberstroh, Jakob Eichberger, the HTBLuVA Wiener
Neustadt, and all members of robo4you for their support
throughout the process of writing this paper.

REFERENCES

[1] Bernard Schmidt and Lihui Wang
“Depth camera based collision avoidance via active robot control”
(April 2014)

[2] The Things Network
“LoRa and LoRaWAN”
www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
(accessed 11.02.2024)

[3] Connectivity Standards Alliance
“Zigbee”
csa-iot.org/all-solutions/zigbee/
(accessed 12.02.2024)

[4] Broadcom
“Wi-Fi 7 and dual-core Bluetooth combo chipset”
www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4398
(accessed 11.02.2024)

[5] Day, J.D. and Zimmermann, H.
“The OSI reference model”
(December 1983)

[6] IEEE
“802.11n”
https://standards.ieee.org/ieee/802.11n/3952/
(accessed 12.02.2024)

[7] Wi-Fi Alliance
“WPA3™ Specification”
https://www.wi-fi.org/system/files
(accessed 12.02.2024)

[8] Bluetooth SIG
“Bluetooth Low Energy Specification”
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
(accessed 12.02.2024)

[9] Bluetooth SIG
“Logical Link Control and Adaptation Protocol Specification”
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-
54/out/en/host/logical-link-control-and-adaptation-protocol-
specification.html
(accessed 12.02.2024)

[10] BlueZ Project
“BlueZ - Official Linux Bluetooth protocol stack”
https://github.com/bluez
(accessed 12.02.2024)

[11] W. Eddy, Ed. MTI Systems
“RFC 9293: Transmission Control Protocol (TCP)”
https://www.ietf.org/rfc/rfc9293.html
(accessed 12.02.2024)

[12] Advanced Research Projects Agency
“ARPANET”
https://en.wikipedia.org/wiki/ARPANET
(accessed 12.02.2024)

[13] J. Postel
“RFC 768: User Datagram Protocol (UDP)”
https://www.ietf.org/rfc/rfc768.txt
(accessed 12.02.2024)

[14] Matsakis, Nicholas D. and Klock II, Felix S
“The rust language”
(published 2014)

https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
https://csa-iot.org/all-solutions/zigbee/
https://www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4398
https://standards.ieee.org/ieee/802.11n/3952/
https://www.wi-fi.org/system/files
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://github.com/bluez
https://www.ietf.org/rfc/rfc9293.html
https://en.wikipedia.org/wiki/ARPANET
https://www.ietf.org/rfc/rfc768.txt


[15] Carl Hewitt
“Actor Model of Computation: Scalable Robust Information Systems”
arXiv:1008.1459 [cs.PL]
(accessed 12.02.2024)

[16] Ross Harmes and Dustin Diaz
“The Factory Pattern”
https://doi.org/10.1007/978-1-4302-0496-1 7
(accessed 12.02.2024)

[17] Eric Silverberg
“Better architecture with Railway Oriented Programming”
https://medium.com/geekculture/better-architecture-with-railway-
oriented-programming-ad4288a273ce
(accessed 12.02.2024)

https://arxiv.org/abs/1008.1459
https://doi.org/10.1007/978-1-4302-0496-1_7
https://medium.com/geekculture/better-architecture-with-railway-oriented-programming-ad4288a273ce
https://medium.com/geekculture/better-architecture-with-railway-oriented-programming-ad4288a273ce

	Introduction
	Methods
	Wi-Fi
	Bluetooth Low Energy
	L2CAP
	TCP
	UDP
	Rust

	Useful Software Design Patterns for Network Programming
	The Actor Pattern
	The Factory Pattern
	Result Monad and Railway Oriented Programming

	Testing Data Throughput and Reliability
	Benchmarking Throughput and Reliability in an Optimal Environment
	Testing the Effects of Interference on Throughput and Reliability

	Results
	Data Throughput
	Packet Loss
	Latency

	Conclusion
	References

