
Comprehensive Light-Start Methods in Botball
James Gosling*, Matthias Rottensteiner, Alexander Müllner

Höhere Technische Bundeslehr- und Versuchsanstalt Wiener Neustadt
Higher Technical Federal Teaching and Research Institute Wiener Neustadt

Department of Computer Science
2700 Wiener Neustadt, Austria

*Corresponding author’s email: gosling.james@student.htlwrn.ac.at

Abstract—This paper addresses a common issue in botball -
the light-triggered start. In some cases, this problem can even
result in the loss of an entire run. The paper provides tests, tips,
and customised solutions to mitigate the negative effects that
the sensor’s specific environment can have on its functionality.
However, it is important to note that not only every team should
try to reduce noise and get the best possible signal, but that
event organisers should know how to do this as well. New
and experienced teams alike may not know how to deal with
environments that change rapidly throughout the day and venues
with many light sources. A single run that would have scored
many points, but is ruined by a wrong light signal resulting in
false starts, can ruin a team’s morale forever.

Index Terms—Light sensor, Botball, robotics, comparisons,
filter techniques

I. Introduction
For starters, a typical round will begin with mounting the

lamp at the side of the table by the teams and according to
their preferences, and then a hands-off period, which is the
most critical section of any run. If the robot starts before the
lamp gets turned on, the entire run amounts to zero points. A
second chance is allowed, however. This paper is intended for
both players and organisers. However, it is the players who will
find it most useful. The paper compares several approaches to
reducing environmental noise. It also addresses how to deal
with a changing environment.

II. Experiment Setup
Tests will be carried out using the robot shown in figure

2. There will be a full explanation of each test when it is
relevant, but generally the tests will be along the lines of this
scheme: The robot will be placed in a specific location and
its circumstances will be explained. Then it will move in a
certain pattern of a certain range and its measured respective
light values and the difference between its lowest and highest
values will be compared. This ill usually be measured around
the corners of a certain shape. This approach is efficient
from the point of view of both time and explanation to
the user. Although for a Botball light-start a robot typically
remains stationary, different locations show the variability of
the incoming light more consistently.

A. Equipment
The robot was designed with one goal in mind: To be as

accurate as possible in the situations you can expect when

Figure 1: A picture of the light sensor used. [1]

mounting a sensor on a robot used in the Botball competition.
The light sensor is placed at a height that is similar to what
it would be like if it were placed on an iRobot Create, which
is 92mm or 3.6 inches from the ground up. Because readings
should be independent of the robot being used, it was not
placed on a Create. This is done to ensure that the results
and methods presented can be applied to as many different
types of bots as possible. A front-facing light sensor and
a rear-facing light sensor are present. These are analogue
[2] and measure light in a radius of about 20 degrees [3].
With a spectral response of about 880nm, these works with
variable resistors. This means that in order to detect something,
there is a component in the sensor that changes its resistance
depending on if a specific wavelength is shining on the sensor.
[4] This method is usually used at a wavelength of around
610nm, which means that it is outside the infrared spectrum.
These types of sensors, technically known as LDRs or light-
dependent resistors, have a very high resistance when it is
dark, but as the brightness increases the resistance decreases.
[5] When the functions are called to read the measured light
sensor response, these values are translated into numbers that
can be read. Unless otherwise stated, primarily the front-facing
sensor will be tested. A figure of this robot is shown here.

I



Figure 2: A picture of the robot used in the tests

B. Values and Units
The light sensor uses it’s own metric, which ranges from

the values 0 - 4096, with 0 denoting absolute brightness and
darkness being represented with 4096. This is because the
sensor is connected to the wombat with a pull-up resistor.
Furthermore, the sensor seems to have a bias towards lower
light levels, which might be explained by how it reads the
infrared wavelengths. This means that, when not pointing
towards a specific surface, it tends to select a value that is
close to 4000. These given numbers will be simply called light
(values) or units. Every graph will either be declared as one
of these units or will be given in percent.

III. Implementations
For the first test, the robot will be driving along a square-

shaped track and measure how different the detected values
can be for different lengths of the side fragments. Every point
shown on the graphs will be the average of all four points
measured at that sidelength. The first set of tests will work
in the following way: The test robot will drive in a square
shape and the detector will be able to measure their respective
luminance at certain distances. This will be done without
anything obscuring or aiding the sensors. Anything that can
or will help with the objective will be added later, as it is
important to get an idea of the base values. Higher values
indicate a darker subsurface.

The tests were carried out on a standard botball table [6],
which means that the first tests with a side length of 40 cm
are about the same size as the starting box. 60 cm is about 3/4
of the depth and almost 1/4 of the length of a typical botball
table. The deviation is greatest in the middle test, meaning
that at about half the depth of the table, the light changes
rapidly and aggressively in our setup. It is at the square corners
that all our values are recorded. The first thing to do is to
check the position of the sensors, otherwise they could cast

Figure 3: The value of the light at each measured point in the
test

Figure 4: The maximum deviation between the light values at
the measured points

damaging shadows. In Botball you will probably place the
sensor on the back of the robot. This will increase the darkness
by up to 76%. This also means that a large amount of light
is blocked, which helps to minimise environmental damage.
As explained in the following section ’Suggested Solutions’,
this will become even more intense if the sensor is mounted
downwards.

A. wait for light

The wait for light function is used for a start. It waits, and
periodically generates a boolean value which, if true, breaks
out of a loop and allows the rest of the program to commence.
It continuously measures the light values, and if one converges
from the last by a fixed unit difference of 100, the condition
is met and the function ends. [7]

II



Figure 5: Light values at certain side lengths with tape on its
sides

IV. Proposed Solutions
The results in this section might not be reproducible and

therefore provide only anecdotal evidence. So, from now on
the variation in % to the ratio without anything attached will
be given. One thing we will not discuss is the so-called ”straw
solution”, where you shield the sensor with a paper or plastic
straw, because this approach is a beginner’s solution.

A. Black tape
The simplest solution, and one used by many teams, is to

place a piece of black tape or something similar around the
light sensor, leaving a hole where the start signal will hit the
sensor. The main advantage of this method of reducing the
noise in the environment is that the light will not be picked
up from any unwanted angles. Unfortunately, this approach
has two major drawbacks: Firstly, the robot must be set up in
exactly the same way every time, as a slight change in angle
can have a significant distorting effect on the signal and, in the
worst case, result in an early start or no start at all. A second
disadvantage is that the tape can easily stick to the sensor and
block the light. Removing it can also be tricky. Often a light
sensor can be damaged. Leftover adhesive can also alter the
sensor’s input. All things considered, this solution is good,
but risky and unstable. The results of our tests are shown in
Figures 5 and 6, and are the subject of discussion below.

As demonstrated in figure 6, if you stick the tape around the
sensor you get about 18 to 45 (!) % of the deviation you would
get otherwise. Put differently, the values vary a lot less than
without the tape, because excess light from unwanted angles
is filtered out.

B. Rotation
The second experiment examines the influence of sensor

rotation. As previously stated in the equipment section, two
sensors are attached to the robot, but only one has been
evaluated thus far. Now we are going to compare the two, with

Figure 6: The maximum deviation between the squares points
light values with tape on its sides

Figure 7: The difference in deviation / variation for horizontal
and vertical sensors.

the main difference being that one is mounted horizontally and
the other vertically, facing downwards. This is because if they
were pointing upward, they would be facing the light from the
room itself at all times. You can see both builds in figure 8 a
& b respectively. The absolute readings will be skipped this
time, as the light conditions will of course be the same for both
sensors. The test was performed in a dimly lit room in order
to keep the variation very small. It is worth noting that the
underground is not a monochrome colour, but a representation
of last year’s botball table. As the vertical sensor is mounted
downward, it can detect these shades and alter its value.
This can sometimes result in seemingly illogical outcomes.
However, it is important to note that only the deviation is
being compared in this instance. Figure 7 displays the results.

As you can see, in spite of the underground, the downward-
facing ones have the upper hand, as they usually do not

III



(a) Vertically mounted

(b) Horizontally mounted

Figure 8: Vertically and horizontally mounted sensors

come into contact with the bright light source coming in
from diagonally above, which the horizontally positioned ones
seem to catch. This means that you should position the lamp
diagonally below your sensor at the start of botball rounds. You
could also use it for other purposes, such as communicating
game information between robots, as previously demonstrated
in Botball. [8]

C. Kalman-Filter
A software-based approach could also implement the

Kalman filter, which estimates the state of a system based on
the data collected. The measurement variance is approximately
1700 units due to variations in light values when light is shone
at it at a 20-degree angle in a normalised position. This is
about 50% of the maximum value (4096) that the sensor can
deliver! Therefore, the filtered approach would resemble the
following pseudocode: [9]

1 class KalmanFilter:
2 state_estimate = current state
3 estimate_error = initial error estimate
4 process_variance = how much the filter can

change in a single step
5 measurement_variance = how much the input can

change in a single step
6

7 method KalmanFilter(state_estimate):
8 this.state_estimate = state_estimate
9

10 method update(measurement):

11 // Prediction step
12 state_predict = state_estimate
13 estimate_error_predict = estimate_error +

process_variance
14

15 // Update step
16 kalman_gain = estimate_error_predict / (

estimate_error_predict + measurement_variance)
17 state_estimate = state_predict + kalman_gain

* (measurement - state_predict)
18 estimate_error = (1 - kalman_gain) *

estimate_error_predict
19

20 return state_estimate
21

22 function lightstart(filtered , noisy):
23 if noisy < filtered * 0.8: //(1 - percent that

the values have to change to start(for example:
1 - 0.2 (20%) = 0.8))

24 return true
25 else:
26 return false
27

28 function main():
29 zen = Sensor()
30 kalman_filter = KalmanFilter(zen.read())
31

32 noisy_reading = 0.0
33 filtered_light_level = 0.0
34

35 while true:
36 noisy_reading = zen.read() // Replace with

your actual sensor reading
37

38 // Apply Kalman filter
39 filtered_light_level = kalman_filter.update(

noisy_reading)
40

41 if lightstart(filtered_light_level ,
noisy_reading):

42 all of your code here

In the main function, initialise two variables. Then, enter
an endless while function. In this loop, continually reassign
the variable value. Variable 1 gets the raw sensor readings,
while variable 2 gets the value that the KalmanFilter method
returns with variable 1 as its parameter. Then, call the lightstart
function with variable 2 and variable 1 in an if-statement that,
if true, breaks out of the aforementioned loop.

D. Sensor fusion

Sensor fusion can also be used in combination with any
proposed solution. Sensor fusion involves the use of multiple
sensors and the achievement of consistency between the val-
ues. This can be quite tricky, a simple but flawed example
written in pseudocode can be found here;

lightstart_function((sensor1.read() +

sensor2.read())/2)

Other algorithms besides the simple arithmetic mean can be
used, depending on the type of functions intended. There may
not be enough space to place two sensors next to each other to
aid each other in recognizing the signal sent out by the lamp.
This section describes the potential uses of the subject matter
but is too unstable for use in programming a robot’s start time.

IV



E. Moving Average
Another approach you could take (which can not be com-

bined with the other shown here) would be the moving average
filter. Although there are different variations such as the
weighted or cumulative moving average, its simplest form
would look like this [10]:

𝑦𝑛 =
1
2
(𝑦𝑛−1 + 𝑥𝑛)

where xn is the incoming value and yn, is the newest value,
subsequently making yn-1 the last result of the function. This
filter, much like the Kalman filter, takes previous steps and the
new value into account, but unlike the Kalman filter, it only
works with the absolute value of the last and current step, and
doesn’t need any temporary variables to update every step, hence
it uses a step less than the Kalman filter. This may lead to a slight
increase in performance, even if it can be considered negligible.

V. Conclusion
Using the Kalman filter in addition to mounting the light

sensor vertically is probably the best way to go about solving
your light-related problems. Sticking with the black tape, as
KIPR suggests [2], can be done additionally and will probably
help, but at the cost of an added risk of damaging your light
sensor if the tape gets stuck, because if you try to remove it by
force, it could tear the sensor. Recall that it also depends on the
specific situation. Therefore, you should try a healthy mix of all
the options shown in this paper, as well as some efficient ones
from your imagination. There is no one-size-fits-all approach,
you have to decide what works best for your setup.

Acknowledgement
The authors would like to thank Dr. Michael Stifter for

supporting the paper in providing both writing and technical
assistance. We would also like to thank Dipl.-Ing. Harald
Haberstroh, who has so kindly offered his skills and years of
knowledge to robo4you.

References
[1] “Light sensor.” https://botball-swag.myshopify.com/products/

light-sensor.
[2] Miller et al., “Kiss institute for practical robotics botball

kit documentation.” https://www2.seas.gwu.edu/∼ece001/6usefulLinks/
HandyboardProgrammingManual.pdf.

[3] KIPR, “Sensor and motor manual.” http://files.kipr.org/ebc/Source/
resources/Sensor and Motor Manual BB2013-no camera.pdf.

[4] V. Ryan, “Potentiometer/variable resistor.” https://technologystudent.com/
elec1/vary1.html.

[5] “Light sensors.” https://www.electronics-tutorials.ws/io/io 4.html.
[6] PRIA, “2023 botball game table build.” https://ecer.pria.at/wp-content/

uploads/2023/02/2023-Game-Table-Full-Build-v1.2.pdf.
[7] KIPR, “kipr/libwallaby.” https://github.com/kipr/libwallaby.
[8] I. Hönigmann, M. Eiwen, M. Guzmits, C. Kauhofer, P. Kain, and

C. Schnabl, “Sensor based one-way communication in multiple mobile
robot systems: an experiment.” https://robo4you.at/publications/sensor
based communication.pdf.

[9] Mathworks, “Understanding kalman filters.” https://de.mathworks.com/
videos/series/understanding-kalman-filters.html.

[10] D. Swoboda et al., “A comprehensive study of simple digital
filters for botball ir detection techniques.” https://robo4you.at/static/
88f989ab8bb2a7eab7ae4f6f15b1baaa/Study of Digital Filter
Techniques.pdf.

V

https://botball-swag.myshopify.com/products/light-sensor
https://botball-swag.myshopify.com/products/light-sensor
https://www2.seas.gwu.edu/~ece001/6usefulLinks/HandyboardProgrammingManual.pdf
https://www2.seas.gwu.edu/~ece001/6usefulLinks/HandyboardProgrammingManual.pdf
http://files.kipr.org/ebc/Source/resources/Sensor_and_Motor_Manual_BB2013-no_camera.pdf
http://files.kipr.org/ebc/Source/resources/Sensor_and_Motor_Manual_BB2013-no_camera.pdf
https://technologystudent.com/elec1/vary1.html
https://technologystudent.com/elec1/vary1.html
https://www.electronics-tutorials.ws/io/io_4.html
https://ecer.pria.at/wp-content/uploads/2023/02/2023-Game-Table-Full-Build-v1.2.pdf
https://ecer.pria.at/wp-content/uploads/2023/02/2023-Game-Table-Full-Build-v1.2.pdf
https://github.com/kipr/libwallaby
https://robo4you.at/publications/sensor_based_communication.pdf
https://robo4you.at/publications/sensor_based_communication.pdf
https://de.mathworks.com/videos/series/understanding-kalman-filters.html
https://de.mathworks.com/videos/series/understanding-kalman-filters.html
https://robo4you.at/static/88f989ab8bb2a7eab7ae4f6f15b1baaa/Study_of_Digital_Filter_Techniques.pdf
https://robo4you.at/static/88f989ab8bb2a7eab7ae4f6f15b1baaa/Study_of_Digital_Filter_Techniques.pdf
https://robo4you.at/static/88f989ab8bb2a7eab7ae4f6f15b1baaa/Study_of_Digital_Filter_Techniques.pdf

	Introduction
	Experiment Setup
	Equipment
	Values and Units

	Implementations
	wait_for_light

	Proposed Solutions
	Black tape
	Rotation
	Kalman-Filter
	Sensor fusion
	Moving Average

	Conclusion
	References

