Integrating ROS with the KIPR Wombat

Itmam Alam, Akos Papp

Technical Secondary College,
Department of Computer Science,
2700 Wiener Neustadt, Austria
E-mail of corresponding author: alam.itmam @student.htlwrn.ac.at

Abstract—This paper explores the integration of the Robot
Operating System (ROS) with the Wombat Controller, aiming
to enhance the controller’s capabilities using ROS’s modular
architecture and extensive library support. The paper delves into
the potential advantages, drawbacks, and challenges encountered
during the project, offering insights into the complexities of
navigation with ROS 2 in the context of Botball competitions.
Additionally, it presents findings from an experiment evaluating
the performance of the iRobot Create 3 with the navigation
system of our library JoeX, demonstrating promising results in
terms of efficiency and speed. By addressing usability challenges
and introducing libraries like JoeX, this paper aims to enhance
robotics competitions while broadening the accessibility of ROS
2 among Botball teams.

Index Terms—ROS 2, mobile robotics, robotic system, au-
tonomous navigation

I. INTRODUCTION

The world of robotics is constantly changing, and with each
day, we find innovative solutions that enhance the capabilities
of robotic systems. One such innovation that has significantly
impacted the field of robotics since its development is the
Robot Operating System, commonly referred to as ROS [[1]].
The Robot Operating System is currently in its second iteration
(ROS 2), and for our project, we will specifically utilize the
ROS 2 Humble distribution. Throughout this paper, we will
refer to ROS 2 as ROS for simplicity.

ROS has emerged as a pioneering framework for the devel-
opment and control of robot systems. It serves as a flexible
and open-source platform that eases the seamless integration
of hardware components, software modules, and various other
components. Its modular architecture, extensive library sup-
port, and a global community of developers have made it the
preferred choice for researchers and engineers. ROS allows
users to leverage its functionalities to build advanced robotic
applications with reduced time and resources.

However, despite the immense potential of ROS, its com-
plexity often poses a challenge for implementation. As a result,
no team at Botball has yet reached the goal of integrating
ROS with their robot systems. Moreover, there appears to be
a lack of knowledge about ROS within the Botball tournament
community.

In this paper, we aim to address these challenges by
providing an overview of everything that is possible with
ROS and showcasing our successful integration of ROS with
the KIPR Wombat, a versatile robot controller developed by
KIPR and used in the Botball tournament. Our project ”JoeX”

introduces a wide range of possibilities, enabling control over
diverse hardware components and incorporating navigation
technologies unprecedented in this competition.

In the subsequent sections, we will discuss the functionali-
ties and advantages of ROS, explore the library we developed
for using ROS with the Wombat, outline potential use cases,
and address the challenges and considerations that may arise.
Ultimately, we hope this paper serves as a catalyst for future
developments in this field, inspiring new ideas and approaches
in the intersection of ROS and robots.

II. UNDERSTANDING ROS

ROS, the Robot Operating System, is a flexible framework
designed to simplify and standardize robotics development.
It provides a comprehensive suite of tools and libraries that
facilitate the creation of complex robot systems. By offering a
middleware for communication between different components,
ROS enables seamless integration and interoperability among
various hardware and software modules. In the following
sections we will explain the core components of ROS and
mention some of the libraries that were used.

A. Architecture

ROS is at its core a message broker, where nodes establish
direct connections with one another, enabling peer-to-peer
communication within the framework [2]. This communica-
tion infrastructure uses TCP/IP for transmission, facilitating
reliable data exchange between nodes.

publishes msg to /example gets msg from /example

/ N
(Node: /subscriber1)

Node: /publisher

msg

std_msgs/Siring

Topic:
“msg type:

lexample

std_msgs/Sting

std_msgs/String -

/ g

gets msg from /example (Node: /subscriber2)

Fig. 1. Publisher and subscriber model in ROS

Nodes are individual programs within a ROS application,
each dedicated to performing a specific task. It’s a best practice
for nodes to focus on a single, well-defined task to ensure
modularity and reduce the complexity within the system. Each
node has a unique name similar to UNIX paths (e.g.: /node-
name) and is implemented using a designated ROS client
library like rclepp or rclpy [3].

Topics serve as communication channels within a ROS
application, facilitating interaction between nodes. They are
named buses through which nodes exchange messages. Nodes
can publish messages to topics to share information or sub-
scribe to topics to receive data from other nodes as shown in
figure 1.

Services in ROS establish a communication pattern based
on request and response interactions between nodes. Within
this model, a client sends a request to a server and awaits a
specific computation or action, after which the server provides
a response.

Messages are described and defined in .msg files. It is best
practice to put them in the msg/ directory of a ROS package
[4]. Messages look like this:

float32 current_temp
string location

Fig. 2. Example of a ROS message

The first word is a data type the second is the field name.
In the example above, a message structured like this could be
published from a node that measures temperatures. Another
node can then subscribe to the topic and read the incoming
temperature values.

The use of these communication mechanisms allows for
asynchronous and decentralized data exchange, enabling effi-
cient and parallel processing of tasks within the robot system.

B. Toolset and Libraries

ROS comes equipped with a diverse array of tools and
libraries, because it is primarily designed to be modular,
which allows developers to easily use and integrate third-
party components. For instance, the ROS 2 Navigation Stack
provides capabilities for path planning, obstacle avoidance,
and localization. ROS also offers libraries for sensor data
processing, motion control, and perception, such as the Point
Cloud Library (PCL) for 3D data processing [5]].

The Nav2 stack serves as a key navigation stack within
ROS 2, providing developers with powerful tools for build-
ing complex robotic navigation systems. Leveraging ROS 2
as its core middleware, Nav2 integrates crucial components
such as action servers, lifecycle nodes, and behavior trees
to provide a robust navigation system. Action servers enable
the control of long-running tasks, facilitating asynchronous
communication with feedback during execution. Lifecycle
nodes ensure deterministic behavior during system startup and
shutdown, contributing to reliable and predictable operations.
The use of behavior trees [6] offers a structured and human-
understandable framework for defining complex robotic be-
haviors.

The stack’s design emphasizes modularity and ease of
development, exemplified by the integration of modular node
plugins.

The tf2 library stands as a fundamental component within
ROS 2, providing developers with a tool for managing coordi-
nate frames in robotic systems. Tf2 enables users to monitor
and track multiple coordinate frames over time, maintaining
a relationship between them. This allows users to perform
seamless transformations of points, vectors, and other entities
between any two coordinate frames at specified points in
time. ROS specified several naming conventions for these
frames, e.g. "map’, ’odom’ and ’base-link” [7]]. One of the key
strengths of tf2 is that information regarding the coordinate
frames of a robot is accessible to all ROS 2 components on
any computer within the system.

Fig. 3. Transforms of the iRobot Create 3

C. Simulation Tools

Simulation tools play a vital role in the development and
testing of robotic systems. They provide a controlled virtual
environment for evaluating and refining various functionalities,
ensuring the robustness of robot behaviors.

Gazebo plays a crucial role in simulating robots in ROS. It
provides a rich set of tools, allowing developers to simulate
various aspects of robots. From modeling physical interactions
to simulating sensor outputs, Gazebo enables a comprehensive
understanding of how robots operate in diverse scenarios.
Robots can navigate and interact within the simulated envi-
ronment, allowing developers to assess the performance and
reliability of navigation algorithms in a controlled setting.

%+ AN -4 (mRIROALN.

Fig. 4. iRobot Create 3 simulation in Gazebo

RViz2 emerges as a powerful visualization tool, offering
insights into the inner workings and data streams of robotic
systems. This includes sensor data, odometry, and the robot’s
perception of its surroundings. The real-time visualization
enhances developers’ understanding of how the robot perceives
and interprets its environment. RViz2 seamlessly integrates
with Gazebo, creating a unified development and debugging
environment. This integration ensures that developers can
visualize the simulated robot’s data within RViz2 while testing
in the Gazebo simulation environment.

Fig. 5. iRobot Create 3 visualization in RViz2

III. ROBOT COMMUNICATION

This section explores ROS’s role in facilitating communica-
tion within the Wombat platform throughout the Botball run
phases: calibration, game start, and continuous run. Leveraging
ROS’s publisher-subscriber model via topics, services, and
actions, the framework allows for dynamic data exchange and
real-time communication among robots.

During calibration, ROS facilitates dynamic communication
as robots can publish sensor calibration data on dedicated
topics, allowing multiple robots to compare and correct values
as needed.

At the start of a Botball game, ROS communication plays
a pivotal role in synchronizing robotic behaviors. ROS topics
can broadcast important game-related data like start signals
and initial positions, ensuring synchronization among robots.

During a Botball run, real-time communication is essential
for collaboration. ROS topics enable robots to exchange task
updates, ensuring a shared game state understanding. Addi-
tionally, ROS facilitates dynamic service requests of robots,
while ROS actions coordinate long-running tasks like complex
navigation maneuvers.

These scenarios underscore the flexibility of ROS, present-
ing possible communication usages that cater to dynamic robot
interactions.

IV. JOEX LIBRARY

For the integration of ROS with the Wombat platform, a
Python library called JoeX was developed. Serving as a bridge
between ROS and the Wombat, JoeX manages communication
and control over essential components like motors, servos, and
sensors. This was accomplished using the libwallaby library
[8]], developed by KIPR.

A. Structure

JoeX serves as a crucial intermediary in enabling seamless
communication between ROS and the Wombat controller.
Developed using the ROS client library for Python, it offers
an interface for controlling all components used in the Botball
tournament. Additionally, JoeX plays a vital role in managing
the navigation aspects of the platform.

The libwallaby serves as a foundational library for control-
ling components such as servos, motors, and various sensors
with the Wombat. We adapted libwallaby to be compatible
with any ROS node, enhancing its versatility and interoper-
ability within the ROS ecosystem. Our system architecture in-
cludes a C++ node responsible for handling major calculations
related to navigation and driving. This node communicates
with the JoeX Python library using ROS topics, services,
and actions. This approach addresses performance concerns
associated with Python due to the overhead of interpretation
during runtime, which can result in slower execution compared
to compiled languages like C++.

Wombat
Raspberry Pi \ STM32
JoeX Python Lib JoeX C++ Node |
rclpy <« rclcpp libwallaby <« Uil
Firmware

Motors/Servos/Sensors/etc.

Fig. 6. System architecture of JoeX

By leveraging this architecture, we eliminate the need for
compiling code when programming the robots, allowing for
immediate implementation of changes without waiting for
compilation. Our programming approach streamlines the de-
velopment process and maximizes efficiency, with Python code
interfacing seamlessly with JoeX, which in turn communicates
with the C++ node in the background.

B. Configuration

The library parses a YAML [9] file containing all configu-
ration values of the robot, ranging from port specifications
of robot components to PID values of motors. Users have
the flexibility to configure various aspects of the robot’s
functionality, including mapping specific ports of the wombat
to designated names for streamlined programming, as shown
in figure 7.

C. iRobot Create 3

The iRobot Create 3 emerges as a prominent addition to
the supported components of JoeX. It can be utilized in this
year’s Botball tournament, providing participants with an ad-
vanced robotics platform for competition purposes. The robot
is equipped with a multi-zone bumper featuring seven pairs

Servos:

- name: arm
port: 0O
start_position: 0.2617994
update_rate: 100
ticks_per_rad: 732.311681902
max_velocity: 600
motors:
- name: gripper
port: O
ticks_per_rad: 1000
p: 0.1
i: 0.01
i_max: 5
d: 0.1

Fig. 7. Example YAML configuration file used by JoeX

of infrared proximity sensors at the front, enabling obstacle
detection. Additionally, four cliff sensors located at the bottom
ensure the robot remains on stable terrain. The integration
of two wheels with current sensors and encoders enables
precise motion control and odometry estimation. Furthermore,
an optical odometry sensor, combined with the IMU, provides
accurate pose estimation by fusing data from wheel encoders
and IMU readings [10].

The Create 3 supports odometry and IMU sensor-fusion
out of the box, ensuring exceptional accuracy compared to
the older Create 2. Moreover, the Create 3 handles all the
calculations for driving itself, which reduces the load on the
Raspberry Pi of the Wombat.

With its integration via JoeX, we can leverage the rich
capabilities of the Create 3 through ROS. In addition, the
platform’s support for ROS enables the use of autonomous
behaviors, enhancing the versatility of the robot.

D. Navigation Algorithm

For navigating a robot using the Wombat, the Nav2 frame-
work stands out as one of the most powerful navigation
solutions available in ROS 2. With its customization options
and advanced features such as collision avoidance and path
planning, Nav2 offers many features for navigating complex
environments. However, the abundance of nodes and features
within Nav2 can increase system complexity. Despite its
capabilities, many of the advanced features offered by Nav2
are not essential in the Botball competition, leading us to opt
out of utilizing Nav2 in favor of a more efficient approach
with JoeX.

Our system uses a polynomial curve for path planning,
allowing navigation through multiple points with the option
for directional control at the final point. By calculating the
maximum velocity based on parameters such as curvature and
robot specifications, we ensure precise and efficient movement
along the planned path. This approach eliminates the need for
tedious calibration processes, as parameters are measured once
and applied universally.

E. Experiment

We conducted an experiment to evaluate the performance of
the iRobot Create 3 in conjunction with the JoeX navigation

system. Given that both JoeX and the built-in Create 3 naviga-
tion action performed equally well in terms of straight driving
due to the same speed limit constraint, we shifted our attention
to driving curves. It is important to note that when driving
curves with the Create 3, the built-in navigate_to_position
action generates a path that involves driving straight followed
by turns.

canjera

Fig. 8. Test setup in RViz, left: camera stream, right: ArUco marker transforms

Figure 8 illustrates two distinct paths highlighted in blue and
red. The blue path represents the trajectory generated by the
navigate_to_position action, which involves driving straight,
turning 90 degrees, driving straight again, making another
90-degree turn, and finally continuing straight. This method,
while being accurate, is time-consuming due to the sequence
of straight segments and turns required. In contrast, the red
path represents the trajectory achieved by the polynomial
curve. Unlike the navigate_to_position action, JoeX enables
the robot to follow a continuous curve, eliminating the need for
multiple segments and turns. This approach offers fast driving,
enhancing overall efficiency during maneuvers.

For the test setup, a camera was positioned above a Botball
game table capturing images, as shown in figure 8, that were
published on a ROS topic. Additionally, essential camera
parameters, such as an intrinsic matrix, were published via
a camera_info topic for accurate marker detection using the
ArUco OpenCV ROS node [11f]. This node leverages the
camera parameters to detect the position of ArUco markers
[12]] within the images. Subsequently, a transform from the
camera to the detected ArUco marker is broadcasted by the
ArUco node.

To measure the position of the robot accurately, we em-
ployed the tf2 library to calculate the transformation between
two specific ArUco markers. This process allowed us to
precisely determine the relative positions of these markers.

We conducted the curve drive tests for both JoeX and the
Create 3 navigate_to_position action. It consists of driving a
120cm long curve forwards and backwards, five times in a row.
Despite slight variations in accuracy, both approaches exhib-
ited consistent performance, with deviations of approximately
+0.8cm from the start position across all trials. However, the
significant contrast in completion times was evident, with
JoeX completing the test in 66 seconds, while the built-in
navigation required 139 seconds. This difference underscores

the efficiency of the polynomial curve navigation, enabling
faster traversal along the curve compared to the built-in driving
method.

Our navigation algorithm offers significant improvements in
accuracy, particularly in driving smooth and complex paths.
Additionally, our system’s reliance on odometry enables auto-
matic correction, ensuring consistent performance even when
external factors affect the robot’s movement.

The consistent accuracy observed in both approaches also
suggests reliable odometry performance of the robot, although
minor discrepancies may arise due to factors such as camera
precision.

V. CHALLENGES

In this section, we delve into the downsides and difficulties
we encountered during the implementation of our ROS node.
These challenges highlight areas where ROS may present
obstacles or limitations, impacting the efficiency and effec-
tiveness of robotic systems.

A. Complexity of ROS

The comprehensive features and functionalities of ROS
contribute to its complexity, posing challenges for users in
terms of learning and efficiently utilizing the framework. A
deep understanding of nodes, topics, services, and actions is
essential for troubleshooting and debugging within a ROS
system. Managing a project within this intricate ecosystem
requires meticulous attention to detail and expertise, which
can be daunting for novice users.

B. Difficulty in installation

Installing ROS proved to be a significant hurdle, primarily
due to limitations imposed by the hardware and the preferred
operating system environment. While Ubuntu is the recom-
mended OS for ROS installation, its resource-intensive nature
and substantial storage requirements render it impractical
for deployment on the Wombat. Moreover, containerization
solutions like Docker present their own set of challenges, with
trade-offs between resource efficiency and development con-
venience. The choice between an Ubuntu-based container with
comprehensive development tools and the official minimal
ROS image lacking essential utilities underscores the inherent
complexities of ROS deployment and development. Balancing
these considerations is crucial for optimizing the integration
of ROS within robotic systems like the Wombat.

Notably, KIPR pursued these optimizations to enable the
integration of the iRobot Create 3 into this year’s Botball com-
petition. Recognizing the importance of leveraging ROS for
advanced robotics functionalities, KIPR sought to overcome
the challenges associated with ROS deployment to harness
the capabilities of the Create 3 platform. KIPR opted for
containerization using a custom Ubuntu-based image with
Podman for the Wombat platform.

CONCLUSION

While ROS remains a powerful framework for robotics
development, its complexity poses significant challenges for
many teams. Our implementation of ROS within the Wombat
platform revealed the intricacies involved in using its features.
However, our focus on easing ROS deployment, particularly
through the development of the JoeX library, underscores the
importance of overcoming these challenges. The performance
evaluation conducted with the iRobot Create 3 and JoeX
navigation system showcased promising results, with JoeX
demonstrating faster and more accurate navigation compared
to the built-in Create 3 driving action. Looking ahead, ini-
tiatives aimed at simplifying ROS 2 and making it more
accessible can broaden its reach among Botball teams. By
addressing usability challenges and leveraging innovations like
JoeX, we can unlock the full potential of ROS and elevate
robotics competitions to new levels.

ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Stifter, the
teachers of the HTBLuVA Wiener Neustadt, and the members
of robodyou for their kind support in producing this publi-
cation. Special thanks go to Dr. Markus Bader from the TU
Wien for helping us get into the world of the Robot Operating
System.

REFERENCES

[11 M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A. Ng. "ROS: an open-source Robot Operating System”,
Jan. 2009. http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
(accessed Mar. 4, 2024)

[2] Open Source Robotics Foundation. "ROS/Introduction”. ROS Wiki.
https://wiki.ros.org/ROS/Introduction#What_is_ROS.3F (accessed Dec.

12, 2023).
[3] Open Source Robotics Foundation. “Client libraries”. ROS 2
Documentation: ~ Humble. https://docs.ros.org/en/humble/Concepts/

Basic/About-Client- Libraries.html (accessed Dec. 12, 2023).

[4] Open Source Robotics Foundation. “Interfaces”. ROS 2
Documentation: ~ Humble. https://docs.ros.org/en/humble/Concepts/
Basic/About- Interfaces.html#messages| (accessed Dec. 13, 2023).

[5] Open Source Robotics Foundation. "PCL”. ROS Wiki. https://wiki.ros.
org/pcl (accessed Dec. 22, 2023).

[6] Open Navigation. "Nav2 Behavior Trees”. Nav2 Documentation. https:
/mavigation.ros.org/behavior_trees/index.html (accessed Dec. 22, 2023).

[7] W. Meeussen. "REP 105 Coordinate Frames for Mobile Platforms”.
ROS Reps. https://www.ros.org/reps/rep-0105.html#id 13| (accessed Jan.
2, 2024).

[8] B. McDorman, N. Zarman, Z. Sasser, T. Corbly and E. Harrington. "lib-
wallaby Documentation”. https://www.kipr.org/doc/index.html (accessed
Jan. 24, 2024).

[91 O. Ben-Kiki, C. Evans, I. dot Net. "YAML Ain’t Markup Language

(YAML™) Version 1.2”. (accessed Mar. 5, 2024)

iRobot Corporation, "Overview - Create 3 Docs”. Create 3 Docs. https:

//iroboteducation.github.io/create3_docs/hw/overview/ (accessed Jan. 31,

2024).

B. Sowa, Fictionlab. “aruco_opencv”. ROS Index https://index.ros.org/

p/aruco_opencv/| (accessed Mar. 8, 2024)

F. Romero-Ramirez, R. Mufioz-Salinas, R. Medina-Carnicer. ”Speeded

Up Detection of Squared Fiducial Markers”, Image and Vision Comput-

ing, 2018. https://doi.org/10.1016/j.imavis.2018.05.004, (accessed Mar.

8, 2024)

[10]

(11]
[12]

http://robotics.stanford.edu/ ~ang/papers/icraoss09-ROS.pdf
https://wiki.ros.org/ROS/Introduction#What_is_ROS.3F
https://docs.ros.org/en/humble/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Client-Libraries.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Interfaces.html#messages
https://docs.ros.org/en/humble/Concepts/Basic/About-Interfaces.html#messages
https://wiki.ros.org/pcl
https://wiki.ros.org/pcl
https://navigation.ros.org/behavior_trees/index.html
https://navigation.ros.org/behavior_trees/index.html
https://www.ros.org/reps/rep-0105.html#id13
https://www.kipr.org/doc/index.html
https://iroboteducation.github.io/create3_docs/hw/overview/
https://iroboteducation.github.io/create3_docs/hw/overview/
https://index.ros.org/p/aruco_opencv/
https://index.ros.org/p/aruco_opencv/
https://doi.org/10.1016/j.imavis.2018.05.004

	Introduction
	Understanding ROS
	Architecture
	Toolset and Libraries
	Simulation Tools

	Robot Communication
	JoeX Library
	Structure
	Configuration
	iRobot Create 3
	Navigation Algorithm
	Experiment

	Challenges
	Complexity of ROS
	Difficulty in installation

	References

