

Integrating Visual Studio Code into our Botball

Development Workflow

Markus Weberndorfer

Linzer Technikum - HTL Paul-Hahn-Straße

Litec

A-4020 Linz

40146720210298@litec.ac.at

Manuel Zöttl

Linzer Technikum - HTL Paul-Hahn-Straße

Litec

A-4020 Linz

40146720210096@litec.ac.at

Abstract—Our team sought to improve our software

development process for the ECER 2024 Botball challenge by

integrating Visual Studio Code as our primary integrated

development environment (IDE). The built-in KISS IDE

provided limitations such as lagging performance, potential

data loss from crashes, and a lack of modern developer tooling.

By utilizing Visual Studio Code in conjunction with an SSH

connection and a custom build script, we were able to leverage

its robust feature set for writing, debugging and maintaining

our robot control code, while still preserving the ability to

compile and run programs on the Wombat robot controllers.

This paper outlines the motivation behind adopting Visual

Studio Code, the implementation details involved, the specific

benefits realized, and discusses potential future improvements

to further streamline this development workflow.

I. INTRODUCTION

Applying effective software development tools and practices

is crucial for maximizing productivity, especially on complex

projects like those encountered in educational robotics

competitions. While the provided KISS IDE offers a simple,

self-contained development environment tailored specifically

for the Botball kit, our team recognized several shortcomings

that motivated us to explore alternative solutions as part of

our preparations for ECER 2024.

The primary issues we faced with the KISS IDE included

lackluster performance at times, particularly when working

on larger files, lack of advanced editing capabilities like code

completions, and most critically, the risk of losing work due

to browser crashes with no way to recover unsaved changes.

These limitations significantly hindered our coding workflow

and ability to iterate quickly.

Given our team's familiarity with modern development tools

like Visual Studio Code from other coding projects, we

hypothesized that integrating a professional-grade IDE in

place of KISS could help mitigate the issues above and

generally elevate our skills by exposing us to industry tools

used by countless developers worldwide.

II. STATE OF THE ART

Robotics-oriented programming environments have

traditionally coupled relatively basic code editors with

custom toolchains and libraries tailored for their specific

hardware and software stack. While simplifying setup, this

approach forgoes the wealth of advanced functionalities

offered by professional developer tools.

In recent years, however, there has been a push in some

domains to leverage powerful third-party code editors and

IDEs that integrate well with robotic frameworks, rather than

using the proprietary built-in alternatives. Prominent

examples include web-based IDEs like Gitpod for working

with Robot Operating System (ROS), as well as desktop IDEs

like Visual Studio Code featuring comprehensive ROS

support through extensions.

The advantages of adopting industry-standard tools in

educational robotics contexts are multi-fold:

1. Students gain exposure to the same tools used by

professional developers, better preparing them for

future careers.

2. Projects can benefit from advanced IDE capabilities

like intelligent code completions, inline debugging,

rich extensions, and much more.

3. IDEs with a thriving developer community, regular

updates, and cross-platform support avoid potential

stagnation or discontinuation.

Given the active development of Visual Studio Code by

Microsoft, its rich extension ecosystem, and deep Git

integration, we selected it as the ideal professional IDE to

integrate into our Botball workflow.

III. CONCEPT / DESIGN

Our main requirements were:

1. Use Visual Studio Code as the primary code editor

2. Preserve ability to compile and run code on the

Wombat controllers

3. Leverage Git for version control directly within the

IDE

To meet these, we decided to connect Visual Studio Code to

the Wombat over SSH and use a custom script to handle

compiling code and deploying/executing it on the robot.

IV. IMPLEMENTATION

A. Setting up the Environment

We installed Visual Studio Code and the Remote-SSH

extension to enable editing files directly on the Wombat

controllers over an SSH connection. Auto-completions were

limited since VS Code lacks native Botball library support,

but we explored possibilities to generate downloadable code

intelligence data.

B. Compiling and Running

While we could edit files remotely via SSH, we still needed

a way to trigger the existing Botball compiler toolchain to

build our code into an executable binary, transfer it to the

Wombat robot filesystem, and run it on the controller.

To accomplish this, we created a custom bash script that

automated these steps:

1. Compile all .c source files together with required

Botball libraries into an executable

2. Run the executable

This script was configured as a build task in Visual Studio

Code, allowing us to compile and execute our code on the

robot with a simple keyboard shortcut.

C. Version Control

Visual Studio Code provided integrated support for Git

version control directly within the IDE interface. We

initialized a Git repository, committed our code changes, and

leveraged capabilities like branching, pushing/pulling, and

merge conflict resolution. This streamlined collaboration and

change tracking immensely.

V. RESULTS / CONCLUSION

A. Benefits

• Rich code editing: Completions, navigation,

advanced find/replace

• Debugging: Setting breakpoints, inspecting

variables, step execution

• Git integration: All version control workflows in the

IDE UI

• Extensions: Code linters, formatting utilities,

custom themes, etc.

• Cross-platform: Consistent experience on Windows,

Mac, Linux

While there was an initial setup investment, the productivity

gains made it worthwhile. Using Visual Studio Code elevated

our skills beyond the KISS IDE.

B. Future directions

• Tighter integration with Botball toolchain and API

documentation

• Official support for Botball C libraries (code

intelligence, etc.)

Overall, Visual Studio Code successfully modernized our

development experience and better prepared us for real-world

software practices.

