
Reflection of the
ECER Junior Botball Workshops

Muscalu Mihai-Cosmin
Department of Business Informatics

HTBLuVA Dornbirn
Dornbirn, Austria

muscalu.mihai@student.htldornbirn.at**

Ramsdorfer Leonard
Department of Business Informatics

HTBLuVA Dornbirn
Dornbirn, Austria

leonard.ramsdorfer@student.htldornbirn.at

Fink Daniel
Department of Business Informatics

HTBLuVA Dornbirn
Dornbirn, Austria

daniel.fink@student.htldornbirn.at

Immanuel Ehe
Department of Business Informatics

HTBLuVA Dornbirn
Dornbirn, Austria

immanuel.ehe@student.htldornbirn.at

Gantioler Nate
Department of Business Informatics

HTBLuVA Dornbirn
Dornbirn, Austria

nate.gantioler@student.htldornbirn.at

 ** Email of the Author

Abstract — Working in a chaotic environment is not a
desirable way of programming or of communicating different
features with colleagues. One way of solving this issue is by
implementing Git-Flow into projects and sharing the code
with project partners while describing features that can be
implemented and that are planned to be added in the future to
HTL’s robots. The results of this research paper show that
Git-Flow can help save time and facilitate management of
code.

I. INTRODUCTION

We at the HTL Dornbirn have learned that inefficient
planning leads to a chaotic and hectic environment, so we
have developed systems that help us order and communicate
ideas for a better and more concrete way of communication.
A planned course of action leads to an efficient and faster
method of programming and implementation. With the
implementation of Git-Flow into the team’s coding
environment we can reach higher goals, faster
communication of ideas and faster implementation of
features that will help us in the future of this project. Most IT
companies have some form of communication implemented
into their system to reach deadlines faster, so we here at
HTL Dornbirn have learnt multiple systems that facilitate
this. Systems that can help and assist HTL’s students as well
as others in sharing ideas in a team environment can be of
service to companies.

This paper will analyze the efficiency of Git-Flow and
its implementation into this project as a result. Furthermore,
it will evaluate the way in which it was implemented and
how it was used in this project.

II. HOW CAN ONE COMMUNICATE CLEARLY?

A. Definition and Methods

Communication is one of the most important aspects in
a team and it can lead to either a chaotic and messy
environment or a project done with time to spare. Like Nat
Turner said: “Good communication is the bridge between
confusion and clarity,”, thus reinforcing that
communication should be a high priority in every team and

project, if one wants to accomplish their goals in a
reasonable time.

Communication is defined as the ability to transfer
one’s information to another in order to produce greater
understanding of a subject. The product of
miscommunication is often the source of frustration within
a team and can lead to conflicts that will inevitably waste
precious time in the scope of the project’s timeline. The
most effective way one can communicate is by first
listening to and understanding their colleagues actively.
Through the act of active listening one can better grasp the
problems within the team and solve them with the
appropriate solution instead of implementing unnecessary
methods into the system. The act of actively listening by
itself is an important step to improve one’s communication
skills. After listening, conveying one’s message clearly and
concisely is the next step of solving or implementing a
feature effectively. Not using filler words and avoiding
excessive speaking is the best way to broach the subject and
suggest ideas. In this section this paper is going to evaluate
and research the importance of communication within a
team. ([4], n.d.)

B. Importance within a team environment

With the rise of digitalization and automation,
communicating ideas clearly is becoming more of a problem
in the modern world. In a 2016 LinkedIn survey,
communication was seen as one of the most important skills
when working within a team environment and was
extremely valuable to future employers. ([1], n.d.)

The team’s way of leveraging communication potential
is by implementing Git-Flow into the workflow of the team
members and analyzing its benefits and average use by this
team’s members. The paper’s goal is to not only reduce the
programming time but to also improve the team’s skills for
the future to gain a more detailed understanding of
communication and how it can be used effectively.

4cWI#0622, 2023 ECER

III. CONCEPT AND STRUCTURE

The concept and structure of Git-Flow is based on
using GitHub along with VS Code to create a more ordered
environment by separating different code and code versions
into multiple branches. For example, this team can program
code for an idea yet to be approved just to be able to test and
demonstrate it but only do so on the “Features” branch
instead of “Main” or “Implementation”, like you can see in
Error: Reference source not found This allows us to be able
to separate and identify what the code should be used for,
and which is of more importance during the testing or
implementation phases of this project. This provides us
with a clear and concise way of programming and also a
better understanding of the teammate’s intentions with their

code.

A. Structure and use of Git-Flow

By using Git-Flow this team is able to create a
centralized workflow and a streamlined repository. This
allows faster and more accurate communication of
intentions between the team and avoids conflicts and
confusion that can only lead to an unfinished product. The
team will be using Git-Flow by writing the necessary code
in VS Code, where Git-Flow will be present, and after it is
finished, uploading it into the robot program. If any
changes occur during the testing of the program, it is to be
copied and then pasted into VS Code in order to be able to
be accessed at a later date and viewed by the entire team.
The team implemented this feature because the majority of
the time schedules did not align and so the team was not
able to work together or share ideas with colleagues.

In the first session of using Git-Flow this paper will
analyze how much time it takes for the team to get used to
this method of code management. After that this paper will
also analyze how much it improved the team’s efficiency
and how much time was saved by using this method over
others. These will be analyzed in detail, and this paper will
be reviewing and reassessing the effectiveness of this
method daily by asking colleagues directly or by looking at
the evolution of the code and how it was influenced by this
method.

IV. RESULTS

In this section one can read about the results of our
implementation of Git-Flow and how it has affected the
working environment along with what benefits it had in this
project. Here one can also find the results of the daily
analyzation and whether it has benefited this team in the
long run or it did not yield the expected results.

A. First days of the implementation

In the first days of the implementation of Git-Flow
most of our programming time had actually slowed down,
but not considerably. Eventually the speed at which the
team completed tasks was faster than before the
implementation as you can see in Error: Reference source
not found. The team’s members, even still being new to this
programming language, almost managed to reach the
average daily lines of code that a professional writes. ([3],

n.d.)

B. Benefits

Through research this paper has found that the speed of this
team had improved because the management and
communication were facilitated with the use of Git-Flow.
The member could look at the code that a colleague had
programmed and not make the mistake of programming the
same feature or a similar one. The improvement of
communication resulted in the mitigation of duplicates
withing the team.

The benefits of Git-Flow were not immediately clear,
but in the long run it was useful. In Error: Reference source

not found you can see an example of the project structure.
As one can see, this project structure was simple to

understand, and it is easier to plan for the future when
understanding the current situation. This team’s members
reported less confusion and better understanding of their
colleagues’ ideas in contrast to teams that did not use Git-
Flow as you can see in the survey in Error: Reference
source not found.

2

The members could communicate their ideas and even
their colleagues’ ideas at a deeper level than before. It also
improved relations between the members, as there were
almost no conflicts in the team. Conclusion

Communication is one of the most important aspects
in programming work and without it conflicts and
confusion will thrive in your team environment. Git-Flow
helped mitigate this issue but did not rid it entirely. Our
planning withing Git-Flow is what actually cemented better
communication within our team and what made working
together an easier task than ever before. Git-Flow helped us
greatly to implement some features that we are excited to
present at the upcoming contest.

V. ACKNOWLEDGEMENTS

This paper would like to acknowledge Manuel Mayer
for his guidance with the writing of this research paper.
This team would also like to thank our professor Mr. Lenz
Norbert for his guidance and help during this project.

VI. WORKS CITED

[1]. (n.d.). LinkedIn survery; Top 10 most in demand soft skills. Retrieved from LinkedIn:
https://www.linkedin.com/business/talent/blog/talent-strategy/most-indemand-soft-skills

[2]. (n.d.). Git Flow exaple. Retrieved from www.atlassian.com: https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow

[3]. (n.d.). Retrieved from Medium: https://medium.com/modern-stack/how-much-computer-code-has-been-written-
c8c03100f459

[4]. (n.d.). Retrieved from corporatefinanceinstitute:
https://corporatefinanceinstitute.com/resources/management/communication/

[5]. (n.d.). Retrieved from Atlassian: https://www.atlassian.com/git/tutorials/comparing-workflows

3

	I. Introduction
	II. How can one communicate clearly?
	A. Definition and Methods
	B. Importance within a team environment

	III. Concept and Structure
	A. Structure and use of Git-Flow

	IV. Results
	A. First days of the implementation
	B. Benefits

	V. Acknowledgements
	VI. Works Cited

