
Speeding up Code-Compilation for Botball
Philias Kuntsche∗, Sebastian Munkhbat,

Department of Computer Science
Höhere Technische Bundes-Lehr- und Versuchsanstalt Wiener Neustadt

(Federal Technical Secondary College)
Wiener Neustadt, Austria

∗Corresponding author email: kuntsche.philias@student.htlwrn.ac.at

Abstract—To compile code as efficiently as possible and thus
work much faster is a goal of most programmers, particularly
in the context of the Botball competition. The authors present
two concepts to increase the speed of compilation, cross- and
distributed compiling. They describe in detail how the concepts
work theoretically and how the two concepts differ. The authors
also discuss the practical implementation and the problems or
approaches there are and how they can be solved. Finally, further
ideas for making compilation faster are described. The impact
of this work extends beyond the Botball competition, informing
roboticists and engineers about the problems on how to increase
the efficiency of compiling and programming code and what
problems there are. To help many developers, all resources are
online

Index Terms—distributed compilation, virtual images, docker,
QEMU

I. INTRODUCTION

Compilation is a significant factor for large projects, such as
the Botball competition, optimizing process management and
compilation is crucial for maximizing effectiveness, particu-
larly the efficiency. The primary concern is the performance
of the robot, in the case of the authors the Wombat [4] used
in the competition, which, due to its small form factor, has
inferior performance. This work aims to improve the speed
of compiling code and proposes two approaches: cross- and
distributed compilation. In this case distributed compilation
means to send code to a virtual machine on a server. This
machine compiles the code and sends it to the Wombat. Cross-
compilation involves compiling code for a targeted system on a
more powerful computer, which may have a different operating
system and processor architecture.
On the other hand, distributed compilation uses a third-party
system, such as a server, to compile the code, send the binary
to and have it executed on the target. The idea is to run a virtual
machine on a powerful server, which compiles the code for
the Raspberry Pi [3], which is used in the Wombat Controller,
directly on the desired architecture and thus speeding up the
compilation.
This study highlights the issues with strategies aimed at
improving compilation efficiency and proposes solutions to
address them.

II. STUDY OF LITERATURE

As stated by the authors of “Cross-Compiling tutorial with
Scratchbox”, cross-compilation was developed late, code was

written for a specific machine that had a specific purpose [1].
But after realising that some processors have more computing
power than others and that the code is used in many machines
and for various purposes, it was easy to see that in many
cases compiling the application on a different machine would
take less time than compiling it on a machine where it is
to be used, and so the idea of cross-compilation was born.
Therefore, the use of cross-compilation only makes sense if
it reduces the time required for compiling. To date, cross-
compilation has been implemented and documented and so
far there are plenty of works or studies that deal with the
problems and implementation. This study focuses on the
detailed implementation, problems that occurred, suggestions
for solutions and how it can be used in the Botball competition.
Cross-compilation can in most cases be somewhat complex
and fragile [2]. The reasons for this are that there are many
different methods of implementing cross-compilation and all
of them have their own challenges. Another problem is how
the libraries used are structured. It can also be difficult to
ensure compatibility between the host and target systems.

III. METHODS

This section introduces and explains how the authors
attempted to set up cross- and distributed compilation.
Important information about the tools used is described
further below.

A. Programming Language

The programming language used in this work is C++. As
seen in Table I the authors use C++20. The newest option
is C++23, this work opts to use C++20 as it is the current
standard used by most programmers. It has various advantages
and new features opposed to the previous versions. One such
feature is the three way comparisons operator, which could be
used to measure the distance between the target and the robot
and take the appropriate action, or to tell what color a certain
object is on a camera or sensor.

B. QEMU

QEMU, short for Quick Emulator, is a free and open-source
emulator that uses dynamic binary translation to emulate a
foreign architecture. It provides a range of hardware and
device models, allowing it to run various guest operating

mailto:kuntsche.philias@htlwrn.ac.at


Usage Tool Version/Specification
Programming
Language

C++ C++20

Virtualization
Software

QEMU 8.2.0

Docker 23.0.3
Hardware Botball Kit 2023
Operating Sys-
tem

Wombat OS ver. 30.2.4

TABLE I: An overview of tools used for the study

systems. QEMU can also work with Kernel-based Virtual
Machines (KVM) to achieve near-native virtual machine
speeds for same-architecture guests. QEMU also allows for
execution of processes on a user-level even on different
architectures. It allows applications, compiled for one
architecture, to operate on another [9]. The version and
specifications can be seen in Table I.

C. Wombat

The KIPR Wombat is the current robot controller used in
Botball. It has been selected for all research as the computer
that will receive the final compiled binary file and execute
it, as it can be easily be mounted onto a robot as well as
connect to it to build programs. It has a Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU and one gigabyte of RAM.
Additionally the wombat has several plugs, which makes
connecting servos and motors easy, as well as allowing to test
them using a menu option on the Wombat operating system.
The network card of the Wombat allows it to host or connect
to a network, enabling communication between the Wombat
and other computers.

D. Docker

Docker is an open-source platform that allows the user
to automate the deployment, scaling, and management of
applications within containers. It has been selected to compile
the code inside a container to provide the necessary isolation
and reproducibility needed by such a project. These con-
tainers are lightweight and standalone packages that contain
everything needed to run an application, including the code,
runtime, system tools, libraries, and settings. They are isolated
from each other and bundle their own software, libraries and
configuration files; they can communicate with each other
through well-defined channels [10].

IV. CROSS COMPILATION IN THEORY

The computer used in this study, or the compiling computer,
is a modern laptop running the Windows operating system. Its
processor is the Intel Core i5 12500H [5].

The task involves compiling code for the Raspberry Pi and
sending it via an SSH connection within the same network.
This approach is expected to significantly improve efficiency,
as the Raspberry Pi would be vastly outperformed because,
as shown in Fig. II, the Laptop has much more power and

Fig. 1: Cross-compiling

Raspberry Pi 3B Intel Core i5 12500H
CPU-Cores 4 12
Clock Speed
(Ghz)

1.2 4.5

RAM (GB) 1 16

TABLE II: This table compares the Raspberry Pi 3B with the
laptop and its processor [5], which would have been used in
cross-compilation

better hardware than the Raspberry Pi 3B. As well as being
far more powerful, the binary sent would only need to be
executed, which would cut down additional time needed to
load or unzip any files.

V. CROSS COMPILATION IN PRACTICE

As previously mentioned, the system used for competition is
a powerful laptop, which can be seen compared to the Wombat
in Fig. II. With Docker, everything needed was transferred
using a container. Various programs were then compiled for
the appropriate target architecture and lastly, just the binary
was sent back as shown in Fig. 2. The authors managed to set
up this method successfully, however, various libraries have
been compiled into the binary as a ”shared library”. This
means that the binary will not run without the correct libraries

Fig. 2: Distributed Compilation



in the correct directory. You would have to create the same file
structure as on the Wombat, which is not possible on Windows.
On Linux, it would theoretically be possible to create the file
structure with the libraries, but the libraries imported in the
project would still not work, so while the binary was compiled
successfully, it could not be executed on the Wombat, because
shared libraries could not be loaded, and so the authoring effort
ended.

VI. DISTRIBUTED COMPILATION IN THEORY

Distributed compilation requires a powerful third-party
system, such as a server. This server is expected to receive
the programs, compile them and then send them back to
the Wombat. To do this, the server requires libraries and
programs to compile the code, which the authors solved using
images which were run on virtual machines. In this case an
image means a disk image of the Wombat. These images act
as copies of the data within the Wombat, which would be
sent to the server. In this manner, the server can correctly run
the program. This should allow for faster compilation time.
The server would then compile the code and send the binary
to the Wombat, which would only need to be executed on the
Raspberry Pi.

VII. DISTRIBUTED COMPILATION IN PRACTICE

The authors received the server from the robo4you organiza-
tion, which enabled testing the speed of the server, as well as
comparing distributed to native compilation. The server had
16 gigabytes of RAM and 8 CPU cores. To implement the
image mentioned above, the instruction manual in the KIPR
repository was used [8]. To be able to compile the programs,
an image was required that contains all the libraries needed.
This image was created locally on a laptop and needed to be
sent or copied onto the server. Simply transferring it was not
possible, due to there being no transferring protocol such as
the secure copy protocol (SCP) [6].

Hosting the image on a web server and having it down-
loaded using the wget [7] command was a possibility, al-
though more problems like the virtual machine crashing by
itself after a set amount of time arose.

The Raspberry Pi 3 Model B only contains one gigabyte
of RAM, so to make it faster, it was attempted to add more
RAM, using partitions on a virtual machine. To be able
to change the amount over the maximum of one gigabyte,
the QEMU template of the Raspberry Pi would need to be
changed. During testing, it turned out that the response and
compilation times would be much slower than expected due to
the process of sending data back and forth and unfortunately
the authors could not measure the pure compile times.

VIII. EXPERIMENTS

The laptop compared in Fig. II was also used in all the
tests. The authors tested the compilation times of multiple,
in size different programs, which have the purpose of testing

the compilation time on the Raspberry and the computer to
see if the results would match the graph in Fig. II and the
assumptions about the speed of the Pi. For this purpose,
multiple C++ programs with the compiler g++ [11] were
executed on both computers. The exact time was then provided
by the “time” command [12].Here is an example of what
a command looked like: time g++ file.cpp -o test.
The programs were compiled several times on both computers
and the average time required was taken, which can be seen
in the graph Fig. 4. As can be seen from the graph, the
assumption about the speed of the Pi and also the superiority
of the computer was confirmed.

Fig. 3: KIPR Controller: Wombat

Program 1 Program 2 Program 3
0

20

40

2.23 2.03 0.34

32.54
29.44

7

C
om

pi
la

tio
n

Sp
ee

d
(S

ec
on

ds
)

Compilation Machine Raspberry Pi 3B

Fig. 4: This diagram compares the Raspberry Pi 3B with the
same laptop that is used in Fig. II. Multiple programs were
compiled several times on both computers and the average of
these results is shown. The first program is that of the second
bot and the second that of the mainbot. The third was a small
test program.



IX. RESULTS

Cross compilation was successfully set up by the authors,
though it had to be scrapped for various reasons. One such
reason was the implementation of the libwallaby and third
party libraries. These could not be accessed to transfer and
use on the authors’ laptops, making compiling the code on
the computer impossible. Various fixes were tried, however
each of them failed, so it was decided to scrap it in exchange
for distributed compilation.
The previously mentioned option requires a powerful server,
which was provided to the researchers. To fix the previously
mentioned problem in cross-compilation, an image was used
to copy the data of the Wombat onto the third party computer.
While this option managed to work properly for compiling
code, it ended up being very likely to crash.

X. DISCUSSION AND CONCLUSION

In conclusion, the implementation of both versions was
successful, however, problems which were too time consuming
to fix, caused them to be scrapped. Unforeseen circumstances
made both options to optimize effectiveness and compilation
speeds impossible. For cross-compilation, direct access to the
libraries would solve the problem, allowing for faster run-times
and compilation. An image of the Wombat would not solve
this problem for the same reasons it did not during distributed
compilation. So, while cross-compilation did not exactly fail,
being unable to use the needed libraries unfortunately forced
the authors to completely remove all useability for the botball
competition.
In a similar manner, the setting up and implementation of
distributed compilation did not fail either. The transfer of
files using an image lacked the secure copy protocol or other
transfer protocols, which is one of the reasons the response
times and compilation times is much slower than native
compilation. Even after extensive testing and multiple different
approaches, such as static linking, the results ended in failure.
Setting up both versions did not cause any troubles, although
the results of this paper show that cross-compilation is the
superior and better option, due to the lasting problem being
a fault on the needed libraries, instead of slower compilation
times. The results of said success can be seen in Fig. 4, and
the experiment can be replicated by following the instructions
in the section ”experiments”. Should it be able to circumvent
the problem of adding the necessary libraries, this choice
would be faster. Additionally it would enable usage of various
editors and IDEs, such as Virtual Studio Code, while still
allowing to build and execute the code on the Wombat. This
would not only decrease the time needed to compile programs,
but also allow for faster programming thanks to better work
environments or using the auto completion function available
in various editors. Many of the resources used can be found on
the authors’ GitHub repository [13] to facilitate future teams’
subsequent work.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Michael Stifter, Kon-
stantin Lindorfer, and all the other members of robo4you for
their invaluable support throughout the creation of this work.

REFERENCES

[1] V. Mankinen, V. Rahkonen Cross-Compiling tutorial with Scratchbox
IN: Scratchbox, 2005.

[2] W. Gay Cross-Compiling IN: Springer, 2018.
[3] Raspberry Pi 3B https://www.raspberrypi.com/products/raspberry-pi-3-

model-b/ (accessed 2024-02-22)
[4] KIPR Wombat https://www.kipr.org/kipr/hardware-software

(accessed 2024-02-22)
[5] Intel Core i5 12500H https://www.intel.de/content/www/de/de/products/sku/

96141/intel-core-i512500h-processor-18m-cache-up-to-4-50-
ghz/specifications.html (accessed 2024-02-22)

[6] SCP https://venafi.com/blog/what-secure-copy-protocol-and-how-use-it/,
https://de.wikipedia.org/wiki/Secure Copy (accessed 2024-02-23)

[7] wget https://www.ionos.com/digitalguide/server/configuration/linux-
wget-command/ (accessed 2024-02-23)

[8] KIPR GitHub Repository Creating a Virtual Wombat Image,
https://github.com/kipr/qemu-wombat (accessed 2024-01-30)

[9] Bellard, Fabrice QEMU, a fast and portable dynamic translator. IN:
USENIX annual technical conference, 2005.

[10] Miell, Ian and Sayers, Aidan Docker in practice IN: Simon and Schuster,
2019.

[11] g++ https://www.geeksforgeeks.org/compiling-with-g-plus-plus/ (accessed
2024-02-23)

[12] time command https://linuxize.com/post/linux-time-command (accessed
2024-02-23)

[13] The authors’ GitHub repository https://github.com/WeC0deIT/ Pa-
per Resources 2024 (created 2024-03-26)


	Introduction
	Study of Literature
	Methods
	Programming Language
	QEMU
	Wombat
	Docker

	Cross Compilation in theory
	Cross Compilation in Practice
	Distributed Compilation in theory
	Distributed Compilation in Practice
	Experiments
	Results
	Discussion and Conclusion
	References

