Usage of Modern IDEs for developing robotics
applications

1% Tobias Madlberger
Software Engineering
HTL St. Polten
St. Polten, Austria
tobias.madlberger @htlstp.ac.at

Abstract—When it comes to programming software, the choice
of the correct Integrated Development Environment, short IDE,
is crucial. This is also the case when it comes to coding robotic
applications. Choices are very limited when developing on a
Wombat. This paper examines the difficulties related to switching
to a different IDE, specifically from the standard KISS IDE to a
more recent one. By looking into the setup procedure, which
includes cross-compiling for Raspberry Pi and strategies for
deployment, we explain the complexities of combining powerful
IDE features with robotics projects. Based on practical expe-
riences and problem-solving approaches, we offer insights into
overcoming certain obstacles encountered during the transition.

Index Terms—Robotics Application Development, IDE, Cross-
Platform Development, Harrogate

I. INTRODUCTION
A. Background

Botball, organized by the KISS Institute for Practical
Robotics (KIPR), stands out as a leading educational robotics
competition engaging middle and high school students. Teams
undertake the challenge of designing, building, and program-
ming autonomous robots to tackle dynamic tasks on a game
table. Unlike remote-controlled robots, Botball places a strong
emphasis on autonomy, nurturing creativity, and problem-
solving skills. The competition’s rules evolve annually, en-
suring fresh challenges. Top teams advance to the Global
Conference on Educational Robotics (GCER), where they
showcase their skills [11].

B. The provided controller and its integrated IDE

Writing the code for the tasks faced in the competition can
be done with the editor provided by the included controller,
which is named Wombat. It is responsible for exposing a sim-
ple interface to control the included hardware. The controller
is built out of a Raspberry PI 3b+ with a custom circuit board,
where different parts of the hardware can be plugged in when
building the robot for the competition. The device itself has
software preinstalled by the organization selling it, including
the editor called the KISS IDE. It’s a very minimalistic code
editor, only providing a very limited feature set. Most people
use this supplied IDE, as the code editor provides all the
functionality needed to write a working program. It’s very
easy to learn, making it a great starting point for beginners
and especially students new to the field of robotics.

2™ Leander Klik
Electrical Engineering
HTL St. Polten
St. Polten, Austria
leander.klik @htlstp.ac.at

C. Benefits of an IDE

An Integrated Development Environment (IDE) is a code
editor that provides a comprehensive toolkit for programmers
to develop software with it. It typically combines several
tools and functionalities into a single graphical user interface,
making the process of writing, testing, and debugging code
more efficient and productive [8].

Some common features found in modern IDEs include:

o Code Editor: IDEs offer a text editor with features like
syntax highlighting, code completion, and code format-
ting, making it easier for developers to write and manage
code.

e Build Automation Tools: IDEs often integrate build
automation tools like compilers, linkers, and build sys-
tems to help developers compile and build their projects
efficiently.

« Debugging Tools: Debugging tools integrated into IDEs
allow developers to identify and fix errors in their code
more effectively. They typically include features like
breakpoints, step-through debugging, and variable inspec-
tion.

o Version Control Integration: Many IDEs provide inte-
gration with version control systems like Git, allowing
developers to manage code changes, collaborate with
team members, and track project history within the IDE.

o Project Management: IDEs often include project man-
agement features such as project templates, file organi-
zation, and project navigation tools, helping developers
organize and manage complex software projects.

D. The need for a different IDE

The shift from the integrated IDE to a different one isn’t just
about surface changes but about strategically improving the
development process and productivity. This change is driven
by various factors listed in Section I-C. Also, the rise of cross-
platform development requires IDEs that can work across
different hardware and operating systems.

For more experienced pupils, the KISS IDE might not
be advanced enough to meet their needs. This editor, for
instance, makes it difficult to have a multifile project and
limits the teams overall productivity by hiding syntax errors
until the code is compiled. Such problems and many others

might put many students into a challenging situation — While
using the integrated IDE might be straightforward, it lacks the
capabilities of a more advanced IDE.

When it comes to deciding whether your team uses the
KIPR Software Suit for developing their robot or if they
bring their own IDE, it can vary. An important factor is the
familiarity with the code editor. When most of the team has
little to no knowledge about the chosen editor, it might be
hard to write code in it.

Overall, IDEs play a crucial role in modern software devel-
opment, providing developers with the tools and workflows
necessary to create high-quality software efficiently.

II. STATE OF THE ART

The KISS IDE has been designed to be straightforward
to use, and that’s why it only provides basic features. For
example, the integrated editor only supports basic syntax
highlighting. However, it’s missing the feature to show syntax
errors upfront.

While the KISS IDE has undoubtedly earned its place,
exploring alternative solutions can uncover valuable insights.
According to this market share estimate taken in 2018, the
commonly used IDEs are Visual Studio, Vim, Qt Creator,
Visual Studio Code and CLion [2]. While the top four IDEs
(and heavily modified text editors) appear to be free to use,
CLion is a paid professional product. But they offer a free
license for students [3]. Therefore, it’s a great opportunity
for students to get to know a professional grade IDE and its
advanced features.

When looking at these IDEs in detail, it becomes clear
that they offer a lot of features that the KISS IDE doesn’t.
Some of them even have extensions, making development
for robotics even easier. For example, Visual Studio Code
is widely used among the robotics development community,
as it’s very flexible when it comes to customization through
plugins. A developer can easily install extensions to support
the development of a specific language or framework, making
it a great choice for developing robotics applications [10]. It
also supports debugging, which is a crucial feature when it
comes to developing robotics applications [6].

III. CONCEPT

Initially, a basic C-Project setup is needed. This can be
generated with the IDE of choice or by simply creating the
necessary files, to define dependencies and run the compila-
tion.

Essential to the project is the inclusion of the Kipr Library,
which provides the required functionalities for our application.
Incorporating this library allows the interaction with various
components of the Wombat effectively. To get the library, it has
to be copied from the Wombat to the project environment, as
shown in Figurel. The libwallaby header files and libwallaby
library binary can be found in the ‘/usr/include’ and ‘/usr/lib’
directories, respectively.

When it comes to compiling the binary, a special build
process has to be used since the final binary shall be executed

Computer

Copy
LibWallaby Files «(== === LibWallaby Files

Source Files

1

Copy
Pi Executable sssus=s = =) Pi Executable

Fig. 1. Flow chart for the cross compilation setup

on the Raspberry Pi. The Wombat, the target the project has
to run on, uses a Raspberry Pi 3b+ for running the operating
system [4]. These hardware limitations require the C code to
be compiled specifically for this architecture, making this a
cross-compilation process [9].

An automated deployment pipeline is needed to upload the
binary to the target device, once it has been compiled. This
ensures that any changes to the code are transferred to the
Wombat in a speedy manner, so that iteration and testing are
possible without delay.

Furthermore, the configuration of the execution environment
on the Wombat ensures that the program can be started from
the robot’s Ul. The program must be able to start by using
either the touchscreen of the controller or the mouse.

1V. IMPLEMENTATION
A. Establishing Connection to the Wombat

Connecting to the Wombat necessitates access to its ded-
icated network, which the device autonomously generates.
Network credentials, including the SSID and password, are
retrievable from the ‘Advanced — Network Settings’ page.

Upon successfully establishing a network connection, it is
necessary to generate an SSH key if it has not already been
done. This involves navigating to the ssh directory, which is
located at ‘/home/[username]/.ssh’ on an ubuntu machine. The
tool ‘ssh-keygen’ must be used to create an RSA-formatted key
pair. The public key content, which can be identified by the
‘.pub’ extension, should be copied.

To initiate an SSH session with the Wombat, the user
typically employs the ssh command, assuming the Wombat’s
IP address is 192.168.125.1 and the username is ‘kipr.” Subse-
quently, authentication is completed by entering the provided
password, conventionally set as ‘botball.’

Upon successful login, integrating the copied public key
into the ‘authorized_keys’ file, located within the ‘.ssh’ direc-

tory of the user’s home folder, facilitates passwordless SSH
authentication for later connections.

Note: The instructions provided assume default settings.
Actual configurations may vary depending on user modifica-
tions.

B. Setting Up the Development Environment

The setup starts with the installation of an appropriate
IDE. Follow the installation instructions described in the
documentation of the editor to ensure a smooth installation
process.

After the successful installation of the wanted editor, a new
project has to be created. The optimal configuration would
contain a CMakeLists file, containing instructions to build a
C++ Executable with the appropriate C++ Language standard,
whereby Standard 20 is preferred.

To incorporate ‘libkipr’ into the project, the user establishes
an ‘include’ folder within the project structure, housing the
essential kipr header files. These files are retrieved from
Wombat using appropriate commands, ensuring accessibility
within the project environment.

C. Cross-Compiling for the Raspberry Pi

The first approach to this was to send all sources onto the
Raspberry Pi and compile the project there. It turned out that
this is a terrible idea. The first issue is that a lot of files
have to be transmitted over the network, which itself might
already take very long. Not just the transition is very tedious,
the compilation and linkage itself is extremely slow. As the
Raspberry Pi only has very limited resources, it takes very
long to compile a simple project.

Due to these circumstances, another approach had to be
tried. This time, the problem has been approached by setting
up a docker container, emulating the Raspberry Pi with all
its installed packages and structure. This turned out to work
quite well, at least when it came to just building the project.
It compiled the project fine and was fast while doing so. The
built sources were even runnable on the pi, but linking the
kipr library failed with many issues. It was missing the libx11
and libpthreads library, which led to being fixable by installing
appropriate dev packages for these libraries, making the linker
find the required files.

Even though docker was able to build the project, the need
for a solution that doesn’t require 39 seconds [Table I] to
compile lead to the actual solution in use. At first, the arm64
compiler for C++ was installed, and a cmake toolchain was set
up and configured. The configuration process included defining
the correct linker and compilers. Then, when running the
cmake tooling, the newly created toolchain has been supplied
as a console argument. This made it possible to compile the
whole project on a much faster computer than directly on the
Raspberry Pi.

D. Cross Compilation Benchmark

To evaluate the effectiveness of each approach, a benchmark
was conducted comparing the performance of compiling the

project using three different strategies: compiling directly
on the Raspberry Pi, using a Docker container emulating
the Raspberry Pi environment, and cross-compiling with a
dedicated toolchain on a separate machine. The benchmark
was performed on a set of ten trials for each strategy, with
the compilation time recorded for each trial. The results are
summarized in Tablel and visualized in Figure2.

Compilation Time

0]
Raspberry Pi

Toolchain Docker

mAvg mSd

Fig. 2. Benchmark Results of Cross Compilation Strategies

TABLE I
BENCHMARK RESULTS OF CROSS COMPILATION STRATEGIES
Strategy Raspberry Pi Toolchain Docker
Average (seconds) 75.88 12.38 38.55
Standard Deviation (seconds) 0.58 0.07 0.58

From the benchmark results, it’s evident that compiling
directly on the Raspberry Pi is the slowest approach, with
an average compilation time of 75.88 seconds and a relatively
high standard deviation of 0.58 seconds. This method suffers
from the limitations of the Raspberry Pi’s hardware.

Using Docker to emulate the Raspberry Pi environment
significantly reduces compilation time compared to compiling
directly on the Raspberry Pi, with an average time of 38.55
seconds. However, issues with library dependencies hindered
the usability of the compiled binaries.

The most efficient approach proved to be cross-compiling
with a dedicated toolchain on a separate machine, which had
an average compilation time of 12.38 seconds. This method not
only drastically reduces compilation time but also overcomes
the limitations of the Raspberry Pi’s hardware and avoids
dependency issues encountered with Docker.

E. Deploying the binary

With the previously configured and now running build
process, the only thing left to do is build the deployment part
of this pipeline. This is needed to upload the compiled binary
onto the robot, which then enables the execution of it. This
can be achieved by using the secure copy tool to upload a file
onto the target device. The targeted folder is important here:
To run the program from the UI on the Wombat, a C-Project
has to be created using the project window on the Wombat
first, as an automatic creation isn’t possible because else the

program won’t show up in the Ul To achieve this, open the
KISS IDE and create a new project.

After the project has been created, the binary can be
uploaded to the project’s build directory. When running
the KIPR OS version 30.2.5 on the Wombat, this folder
is located at ‘/home/kipr/KISS/projects/[projectName]/build,’
whereby ‘[projectName]’ shall be replaced with the name of
the recently created project.

When the file has been uploaded, clicking the run button
on your robot will execute the deployed binary.

F. Debugging the binary

Debugging the binary can be done by using the GDB
debugger, as the binary needs to run on remote device. With
the uploaded binary, the GDB server has to be started on the
Wombat. As the Wombat doesn’t come with it preinstalled,
it has to be installed first using the package manager. Once
installed, the debugger can be started by running the command
‘gdbserver :[port] [pathToBinary]’. The port can be any free
port on the Wombat and the pathToBinary is the path to the
uploaded binary’s path on the Wombat.

Once the debugger is running, the GDB client can be started
on the development machine. Modern IDEs usually provide
a very convenient way to start the debugger, as they have
a built-in debugger. For example, when using CLion, a run
configuration needs to be specified, containing the IP address
of the Wombat and the port the debugger is running on. Once
the run configuration has been set up, debugging is as easy
as clicking the debug button, which will start the debugging
session.

V. RESULTS

Despite these challenges, the transition to a modern IDE
proved to be a worthwhile endeavor. The more sophisticated
IDE allowed us to work on complicated robotics projects more
efficiently. Writing code is now much quicker and less error-
prone due to the reasons stated in Section I-C.

VI. CONCLUSION

To wrap up, the study explored a setup that helps develop
robots with a different IDE than the KISS IDE. Throughout
our exploration, we encountered both benefits and challenges
in transitioning to a modern IDE for robotics development.

One notable benefit of using a modern IDE is its compre-
hensive feature set, which significantly enhances developer
productivity. For instance, the advanced tab completion and
code analysis features helped a lot when it came to quickly
identifying syntax errors and potential bugs in our codebase.
Additionally, the seamless Git integration facilitated efficient
version control, allowing for easy collaboration and code
management among team members.

However, the transition was not without its challenges.
One significant hurdle setting up cross-compilation for the
Raspberry Pi. Initially, the attempt to compile the project
directly on the Pi turned out to be very slow and inefficient,
due to its limited resources. This led to exploring alternative

approaches, such as emulating the Raspberry Pi using a Docker
container. While this approach showed promise, the linking of
the Kipr library failed. Ultimately, using the arm64 compiler
and a CMake toolchain file to compile the project on a faster
machine did the job.

REFERENCES

[1] Haziqa, “Text Editor vs. IDE: Which Is The Best For Beginners?”,
2022. [Online]. Available: https://www.ultraedit.com/blog/text-editor-vs-
ide-which-is-the-best-for-beginners/. Accessed: March. 4, 2024.

[2] Davide Coppola, “Market share of the most used C/C++ IDEs in 2018,
statistics and estimates,” blog.davidecoppola.com, 2018. [Online]. Avail-
able: http://blog.davidecoppola.com/2018/02/market-share-most-used-c-
cpp-ides-in-2018-statistics-estimates/. Accessed: Feb. 28, 2024.

[3] “Education Tools for Students and Educators,” JetBrains, 2024. [Online].
Available: https://www.jetbrains.com/community/education/#students.
Accessed: March 5, 2024.

[4] “Wombat Development Toolkit ~ Manual,” GitHub. [On-
line]. Available: https://github.com/kipr/KIPR-Development-
Toolkit/blob/master/Docs/WombatDevManual.pdf. Accessed on:
March 5, 2024.

[5] KIPR, “Hardware & Software,” www.kipr.org. [Online]. Available:
https://www.kipr.org/kipr/hardware-software. Accessed on: March 6,
2024.

[6] Microsoft, “Visual Studio Code -
code.visualstudio.com, 2024. [Online].
https://code.visualstudio.com/docs/editor/debugging.
March 6, 2024.

[71 Gaurav Raturi, “Cross-Platform App Development: Exploring
Emerging Trends,” LinkedIn, 2023. [Online]. Available:
https://www.linkedin.com/pulse/cross-platform-app-development-
exploring-emerging-trends-raturi-vf4kf. Accessed on: March 6, 2024.

[8] Amazon Web Services, “What is an IDE (Integrated Develop-
ment Environment)?”, aws.amazon.com, 2024. [Online]. Available:
https://aws.amazon.com/what-is/ide/. Accessed on: March 6, 2024.

[9] Anne Barela, “Cross Compiling: Compile C Programs on,” March 2016.

[Online]. Available: http://21stdigitalhome.blogspot.com/2016/03/cross-

compiling-compile-c-programs-on.html. Accessed on: March 6, 2024.

Daniel Biehl, “RobotCode - Language support for Robot Framework

for Visual Studio Code,” Visual Studio Code Marketplace,

Available: https://marketplace.visualstudio.com/items?itemName=d-

biehl.robotcode. Accessed on: March 6, 2024.

“Botball,” KISS Institute for Practical Robotics, 2024. [Online]. Avail-

able: https://www.kipr.org/botball. Accessed on: March 9, 2024.

“Features of an IDE,” adacomputer-

science.org, 2024. [Online]. Available:

Debugging”,
Available:
Accessed on:

[10]

[11]

[12]

https://adacomputerscience.org/concepts/soft_ide_examBoard=all&stage=all.

Accessed on: March 9, 2024.

