
W.T.P. TEACH-IN

Ankush Ahuja, Simon Chladek, Leopold Kernegger, Emily Kralik, Oliver Przewlocki, Danko Vukoja
Technologisches Gewerbemuseum (TGM)

Information Technology
Vienna, Austria

Contact: lkernegger@student.tgm.ac.at

Abstract— This paper examines the application of
Teach-In programming to Obelix, a robot designed for
competition, focusing on addressing the challenges of
precision loss through simplified command execution.
Employing the Create-3 Robot with a modified arm,
this study departs from traditional Teach-In method-
ologies by recording commands instead of precise po-
sitional data to navigate the lack of accurate sen-
sor information. Experiments demonstrate success-
ful navigation but limited arm accuracy, underscor-
ing the complexities of servo calibration and sensor
integration. The study concludes that while Teach-
In programming holds theoretical benefits for robotic
programming, practical limitations regarding sensor
feedback and mechanical precision render it subopti-
mal for competitive use.

I. Introduction

In past endeavors, manually coding various values and
calculating circular rotations to ascertain our robot’s de-
lays emerged as formidable challenges. This year, our ro-
bot, Obelix, benefits from our augmented knowledge. We
previously grappled with escalating offset issues and imple-
mented routines that inadequately corrected these offsets,
resulting in collisions and a loss of precision. To address
these issues this year, we sought to employ more sophisti-
cated control methods for the robot.

A. Teach-In Rationale

Teach-In programming was chosen for its methodological
simplicity, allowing a robot to be manually guided through
a sequence of actions, then memorizing these actions to
autonomously replicate them later. Appreciated for its ease
of use, this approach facilitates an intuitive, hands-on pro-
gramming experience. By leveraging Teach-In, we aimed to
bypass the complexities associated with manual coding and
precise position control, instead focusing on straightforward
programming that could directly influence the robot’s be-
havior. The robot would subsequently replay the input ac-
tions, mirroring the exact sequence and manner in which
they were performed, enabling a precise and adaptable re-

sponse to various tasks and challenges. This methodology
promised a significant advantage in competitive settings,
where the ability to swiftly adjust and execute strategies with
high precision is essential.

II. Concept

To implement Teach-In for our robot, we focused on con-
trol and manipulation capabilities.

A. Robot

The Create-3 Robot, part of this year’s Botball kit, was
selected for its reliable motor functions and the capacity to
support a heavier arm due to its size and weight.

B. Arm

The arm was designed to manipulate our environment. In
an effort to avoid structural issues encountered last year, we
adapted HTL-Anichstraße’s design, simplifying it by elimi-
nating unnecessary features for our experiment and compe-
tition needs, such as the rotating claw.

C. Program

Our program fundamentally differs from traditional
Teach-In applications by saving commands instead of coor-
dinates, due to our inability to accurately determine posi-
tions. This approach, while potentially less reliable, simpli-
fies implementation in the absence of precise sensor data.
Initially planning to use a controller, we ultimately opted
for keyboard input to simplify the implementation and align
with our model of movement execution.

III. Implementation

Our implementation slightly deviated from the original
concept, particularly in the method of input, transitioning
from a controller to a keyboard for easier integration and sin-
gle-command execution, thereby avoiding the complexities
of case handling for minimal performance improvement.

Pseudo code of our implementation:
def control_devices_and_robot(command_file):
    with open(command_file, 'a') as file:
        while True:

mailto:Contact: lkernegger@student.tgm.ac.at


            command = input()
            # If 'x' is pressed, the loop stops,
marking the recording of steps as complete.
            if command == 'x':
                break
            execute_command(command)
            file.write(command + "\n")

def replay_commands(command_file):
    with open(command_file) as file:
        for command in file:
            command = command.strip()
            if command:
                execute_command(command)
                time.sleep(0.1)

def main():
    if not is_robot_connected():
        print("Failed to connect to robot.")
        return

    replay_option = input("Replay commands from a
file? (y/n): ")
    command_file = input("Enter command file name: ")

    if replay_option.lower() == 'y':
        replay_commands(command_file)
    else:
        control_devices_and_robot(command_file)

Photo of our finished robot with its arm:

IV. Experiment

A. Create

This experiment evaluated the reliability of programming
Obelix (the Create Robot) without using the arm.

1) Setup:
A random routine was programmed into our Create,

which started and ended at a fixed point (in this case, the
docking station). We conducted several test runs from vari-
ous starting locations to assess consistency.

2) Results:
Obelix reliably returned to the docking station in all five

test runs, irrespective of the starting location.
3) Conclusion:
The built-in movement functions of the Create proved

highly reliable, necessitating no further adjustments. This
outcome demonstrates that with effective error correction,
as seen in the Create3, the approach is viable in a competi-
tive setting.

B. Create + Arm

This experiment tested the robot’s ability to pick up an im-
provised object, introducing more complexity.

1) Setup:
The robot, positioned in front of a chair with an object

on it, was tasked with picking up the object, returning to its
starting position, and retaining the object in its claw.

Photo of the object:



2) Results:
Multiple attempts with varying starting positions and

commands were unable to accurately replicate the move-
ments for the robot to consistently pick up the object.
Many attempts involved a plethora of individual commands
for fine-tuning purposes, often engaging the servos, which
proved less reliable than the Create3′s built-in movement
functions. This led to compounded errors, such as the arm
colliding with the chair on which the object was placed.

3) Conclusion:
The variability of the test setup precludes a definitive as-

sessment of the code’s efficacy. However, the consistent in-
accuracies indicate the need for improvements in the design
of the arm/claw and the integration of sensor-based correc-
tion.

V. Conclusion

Our approach was theoretically sound, but practical lim-
itations and issues with the test setup resulted in a less re-
liable arm for competitive use. Implementing Teach-In at a
competitive level would require comprehensive sensor inte-
gration and servo calibration, making the approach imprac-
tical. Consequently, we are unlikely to utilize this program-
ming methodology in future competitions.

VI. Sources

[1] The concept of Virtual Teach-In in industrial robotics.
(https://ieeexplore.ieee.org/abstract/document/8444250)

[2] Automated robot programming through teach-by-
showing. (https://ieeexplore.ieee.org/abstract/document/
933255)

[3] HTL-Anichstraße’s Arm design. (https://www.
youtube.com/watch?v=Wzuv4gFlMTU)

[4] Teach-In programming advantages. (https://www.
learntechlib.org/p/35741/)

References

https://ieeexplore.ieee.org/abstract/document/8444250
https://ieeexplore.ieee.org/abstract/document/933255
https://ieeexplore.ieee.org/abstract/document/933255
https://www.youtube.com/watch?v=Wzuv4gFlMTU
https://www.youtube.com/watch?v=Wzuv4gFlMTU
https://www.learntechlib.org/p/35741/
https://www.learntechlib.org/p/35741/

	Introduction
	Teach-In Rationale

	Concept
	Robot
	Arm
	Program

	Implementation
	Experiment
	Create
	Setup
	Results
	Conclusion

	Create + Arm
	Setup
	Results
	Conclusion


	Conclusion
	Sources
	References

