
Adapting Simultaneous and Heterogenous
Multithreading to a generalized implementation

Leopold Kernegger
Student
TGM

Vienna, Austria
lkernegger@proton.me

Abstract—This paper evaluates the performance and practical�
ity of Simultaneous and Heterogeneous Multithreading (SHMT),
a framework designed to enhance computational efficiency by
dynamically distributing tasks across multiple heterogeneous co�
processors. Benchmarks conducted on Coral Edge TPU and
Jetson Nano reveal that SHMT introduces significant overhead
in specific use cases like the Blackscholes algorithm, limiting its
practical advantages.

Index Terms—SHMT, queues, simultaneous computing,
QAWS

I. Introduction

In 2023, Kuanchieh Hsu and Hung-Wei Tseng released a
paper called Simultaneous and Heterogeneous Multithread�
ing, introducing a novel approach to simultaneous computing.
Instead of using a dedicated accelerator for a task, they
proposed splitting a task into subtasks, which could then be
processed on the individual co-processors of the processor.

The paper presents a series of promising results, showing an
average performance uplift of 95% and an average reduction
in energy consumption of 51%. To make these gains practical
for real-world applications, we rewrote their experimental
implementation into a library—both to verify their results and
to provide a way for others to use this technology. [1]

II. What is SHMT

Fig. 1: Explanatory Diagram from P.4 of [1]

Simultaneous and Heterogeneous Multithreading, short
SHMT, works through two base mechanisms, Quality Aware
work stealing and Process queues.
A. Quality-Aware Work-Stealing (QAWS) Scheduling Policy

Quality-Aware Work-Stealing (QAWS) is an advanced sched-
uling policy designed to optimize workload distribution in
heterogeneous computing environments while ensuring com-
putational accuracy. Unlike traditional work-stealing, which
dynamically redistributes computational tasks to balance
workload and maximize resource utilization, QAWS intro-
duces an additional quality-awareness mechanism to account
for varying levels of precision among processing units. This is
particularly relevant in environments where domain-specific
accelerators, such as Tensor Processing Units (TPUs) and
Edge TPUs, exhibit different numerical precision character-
istics compared to general-purpose CPUs or GPUs. [2]

QAWS operates by employing sampling-based methods
to determine the criticality of data partitions, allowing it
to classify tasks based on precision requirements. Two key
approaches are utilized: (1) device-dependent limits, which
impose predefined thresholds on task assignments based on
hardware precision capabilities, and (2) application-dependent
criticality ranking, where data partitions are dynamically
ranked according to their numerical importance. By inte-
grating these strategies, QAWS ensures that high-precision
computations are allocated to hardware capable of maintaining
result fidelity, while less critical computations are offloaded
to energy-efficient accelerators. Empirical evaluations demon-
strate that QAWS achieves a 1.95× speedup over GPU-exclu-
sive execution while reducing energy consumption by 51.0%,
highlighting its effectiveness in balancing performance and
computational accuracy in heterogeneous systems. [1]
B. Process Queue Management in SHMT

The SHMT framework employs a structured queuing mech-
anism to facilitate task execution across heterogeneous hard-
ware components. As seen in Fig. 1, each computing resource
within the system, including GPUs, NPUs, and TPUs, is asso-
ciated with an incoming queue (e.g., GPU queue, NPU queue,
TPU queue) that receives high-level operations (HLOPs) from
the SHMT runtime scheduler. These HLOPs are derived from
virtual operations (VOPs) generated by the compiler and
are dynamically partitioned by the SHMT runtime system
interface.

mailto:lkernegger@proton.me

The scheduler assigns HLOPs to appropriate processing
units based on hardware availability, workload distribution,
and quality-awareness constraints. Task execution occurs
within specialized execution environments, such as CUDA for
GPUs, machine learning models for NPUs, and TensorFlow
Lite for TPUs. Once execution is complete, results are trans-
ferred to the corresponding completion queues, where they
undergo aggregation and synchronization before final integra-
tion into the computational pipeline.

Additionally, shared memory facilitates data synchroniza-
tion between the CPU and accelerators, ensuring efficient
communication. The structured queuing mechanism enables
real-time scheduling adjustments, balancing throughput, en-
ergy efficiency, and computational accuracy across heteroge-
neous hardware resources. By dynamically adjusting task
allocation in response to system workload changes, SHMT
mitigates performance bottlenecks and enhances overall effi-
ciency. This queuing model has been shown to optimize
hardware utilization while maintaining result fidelity, reinforc-
ing SHMT’s applicability in high-performance heterogeneous
computing environments. [1], [3]

III. Methodology

a) Hardware: To evaluate the performance of the SHMT
framework, we conducted all tests on the Coral Edge Dual
TPU on an M.2 interface, though only one TPU was active as
SHMT does not yet support dual-tpu execution. Additionally,
we used an NVIDIA Jetson Nano 4GB Developer Kit without
performance throttling (maximum clock speed configuration).

b) Code Porting and Execution Environment: To ensure
a fair comparison, we ported the original SHMT implemen-
tation to execute exclusively on the Jetson Nano’s GPU and
CPU directly. By calling identical algorithms as the original
SHMT implementation, we eliminated variations arising from
implementation differences.

c) Execution: All executions of SHMT—including sched-
uling, queuing, and hardware dispatch—used the original
SHMT code called via a shared object (.so) library. The OS
environment for all tests was NVIDIA’s official Jetson Nano
image, based on Ubuntu 18.04. All tests were run on identical
pre-generated random data to minimize variance.

Blackscholes was selected because it was demonstrative and
already implemented in the original SHMT paper, facilitating
direct result verification.

IV. Implementation

This section provides a detailed overview of the practical im-
plementation employed to benchmark the SHMT framework,
including an illustrative pseudocode representation of key
operations. The benchmark implementation is divided into two
distinct parts: the library interface, responsible for data initial-
ization and kernel invocation, and the kernel implementation,
which manages internal execution and resource handling.

The library interface initializes test data by generating
random floating-point values to mimic realistic workloads.
After preparation, this data is provided to the computational

kernel—in this case, the Blackscholes algorithm—alongside
parameters specifying the problem and block sizes.
FUNCTION main():
 INITIALIZE random seed
 SET problem_size TO 256
 SET block_size TO 128
 CALCULATE total_elements AS 3 ×
problem_size²
 ALLOCATE input_array[total_elements]

 FOR EACH index FROM 0 TO total_elements -
1:
 SET input_array[index] TO
random_float(0, 100)

 EXECUTE output_array ←
blackscholes_2d(input_array, block_size,
total_elements)

 OUTPUT first 10 elements FROM
output_array

 DEALLOCATE input_array
 DEALLOCATE output_array
END FUNCTION
The kernel implementation receives the input data and calcu-
lates appropriate internal parameters, including verifying that
the provided data size matches expected dimensions for pro-
cessing. Subsequently, memory buffers for input and output
data are allocated. Utilizing SHMT’s runtime environment,
a virtual operation scheduling system (VOPS) dispatches the
computational workload to the selected hardware components
based on the specified internal mode. Performance metrics, in-
cluding execution overhead, are captured during this process.
FUNCTION blackscholes_2d(input,
block_size, total_elements):
 SET execution_mode TO "shmt"
 DETERMINE internal_mode FROM
execution_mode

 CALCULATE channel_elements AS
total_elements ÷ 3
 COMPUTE problem_size AS
SQRT(channel_elements)
 VERIFY problem_size² EQUALS
channel_elements ELSE RAISE ERROR

 DEFINE params WITH ("blackscholes_2d",
problem_size, block_size,
performance_mode)

 ALLOCATE input_array OF SIZE 3 ×
problem_size² × sizeof(float)
 ALLOCATE output_array OF SIZE 3 ×
problem_size² × sizeof(float)
 COPY input INTO input_array

 INITIALIZE performance_metrics
(time_breakdown)
 INITIALIZE kernel_dispatcher (vops)

 EXECUTE device_sequence ←

kernel_dispatcher.run_kernel(internal_mode,
params, input_array, output_array,
performance_metrics)

 ALLOCATE result_array OF SIZE identical
TO output_array
 COPY output_array INTO result_array

 DEALLOCATE input_array AND output_array
 RELEASE performance_metrics

 RETURN result_array
END FUNCTION
The structured approach presented here ensures clarity in
the benchmarking procedure, supporting reproducibility and
precise identification of overheads and potential optimizations
within the SHMT runtime environment.

V. Results

TABLE I: Test results for Blackscholes algorithm.

Data Size SHMT Exec
Time (µs)

CPU Exec
Time (µs)

GPU Exec
Time (µs)

SHMT /
CPU Ratio

256 169783 1241 96076 0.0073

512 435026 1664 101451 0.0038

1024 1544394 2343 98103 0.0015

2048 5733472 3237 207575 0.00056

4096 22662321 5095 101622 0.00022

8192 96189518 8077 102246 0.000084

10240 302399601 10333 192788 0.000034

12288 636004832 12035 195629 0.000019

The results obtained are notably below expectations. The most
plausible explanation for this outcome is outlined as follows:

Performance differences are largely due to substantial
overhead from measurement instrumentation and QAWS
scheduling in the SHMT library. CUDA scalability was
limited due to the Jetson Nano’s GPU memory bandwidth
constraints and our practical CUDA implementation skills. A
complete rewrite of substantial SHMT code sections would
be required to meaningfully reduce this overhead and enhance
performance.

VI. How is this impactful to robotics?

Robots represent a rapidly advancing technology, increasingly
transitioning from specialized industrial automation to versa-
tile general-purpose machines. As robots become more gener-
alized, their computational demands escalate dramatically. For
instance, traditional industrial robots typically require minimal
sensor input, relying primarily on predetermined, reliable
motion paths. Conversely, emerging robotic applications—
such as domestic robots like Tesla’s Optimus—must process
data from diverse sensors, including auditory, tactile, visual,
and LiDAR inputs, alongside multiple gyroscopes and ac-
celerometers. This diversity in sensor data inherently requires
specialized computational units, such as NPUs or TPUs for

AI-driven vision processing. Given the critical requirement for
real-time operation, efficient integration and simultaneous uti-
lization of these heterogeneous processors become essential.
Frameworks like SHMT, or future refinements thereof, directly
address this challenge, enabling complex computations to be
dynamically distributed across various specialized processors
to achieve the necessary real-time performance and reliability
in advanced robotics systems.

References

[1] K.-C. Hsu and H.-W. Tseng, “Simultaneous and Heterogenous Multi-
threading,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, in MICRO '23. Toronto, ON, Canada:
Association for Computing Machinery, 2023, pp. 137–152. doi:
10.1145/3613424.3614285.

[2] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep.
1999, doi: 10.1145/324133.324234.

[3] V. Maksimovic, M. Simic, M. Stojkov, and M. Zaric, “Task queue imple-
mentation for edge computing platform.” [Online]. Available: https://
arxiv.org/abs/2410.19344

https://doi.org/10.1145/3613424.3614285
https://doi.org/10.1145/324133.324234
https://arxiv.org/abs/2410.19344
https://arxiv.org/abs/2410.19344

	Introduction
	What is SHMT
	Quality-Aware Work-Stealing (QAWS) Scheduling Policy
	Process Queue Management in SHMT

	Methodology
	Hardware
	Code Porting and Execution Environment
	Execution

	Implementation
	Results
	How is this impactful to robotics?
	References

