Automated Driving with Real-Time Processing

Maria Malshakova*, Sebastian Manger*, Valentin Lindorfer, Thomas Schweiger
Hohere Technische Bundeslehr- und Versuchsanstalt Wiener Neustadt
Higher Technical Federal Teaching and Research Institute Wiener Neustadt
Department of Computer Science
2700 Wiener Neustadt, Austria
*Corresponding author’s email: malshakova.maria@student.htlwrn.ac.at
manger.sebastian @student.htlwrn.ac.at

Abstract—This paper explores the future of technology and
robotics, with a focus on automated driving. Automated driving
is an emerging technology that aims to improve the efficiency
and safety of transportation. A lack of automation in current
robotic systems often leads to operational failures, some of which
can have serious consequences. It is also a more convenient
type of transportation. It would be beneficial to people who
are unable to do day-to-day tasks due to health issues or
very busy schedules. Although it cannot achieve a lot, a robot
programmed for automated driving can be used for tasks such
as package delivery, bringing coffee or tea, and more. Automated
technology is not a completely new idea. It traces back to Tesla,
Mercedes, and Nuro’s delivery vehicles. They use autopilot to
increase comfort and decrease the accident rate during traffic.
However, since automated driving is a developing technology,
it faces several challenges, including path-finding failures and
dynamic environments. This paper provides explanations of how
automated driving will make daily mundane tasks more efficient,
examples, and customized solutions to these issues.

Key terms-automated driving, automated vehicles, nodes,
dynamic environments, collision avoidance.

I. INTRODUCTION

In this paper, the prime example, as well as solutions, will
be based on the experiments with Coffee Bot, otherwise known
as HUSO(figure [[T]}). The ROSbot was created by the students
James Gosling and Matthias Rottensteiner. Its task is to use
nodes and the map they provide to navigate through obstacles
and deliver the coffee to the end goal. It uses a map and
nodes to navigate itself through the dynamic environment that
is new to the robot. Its main objective is to avoid collision
with any obstacles and ensure successful coffee delivery. This
research aims to enhance the navigation efficiency of au-
tonomous robots by testing the robots performance in dynamic
environments and proposing Al-driven solutions to improve
obstacle avoidance and route optimization.

II. EXPERIMENT SETUP

Experiments will be carried out on the ROSbot(figure [[T]}),
to test the efficiency and capabilities of the robot. After every
test, there will be a breakdown of what happened and how it
was able to achieve that. There will also be explanations of the
map itself that the robot will use. General tests will be carried
out with the robot placed in the hopper. The robot will receive
an instruction to get to a point in the environment. It will
receive the map and coordinates and get to its destination using
the most efficient and safe route. The number of successful

Figure 1: The ROSbot, front left side, close up with no changes
or edits to how the original robot looks like

and failed navigation attempts will be recorded, along with
the safest and most efficient routes chosen by the robot. It
will also be tested on how well it adapts and navigates new
environments.

A. Nodes

The ROSbot uses nodes to locate itself in the environment,
but what are nodes? Well, it’s quite simple, really. The
definition of a node is a unit of computation; it is a tool for
communication and carrying out tasks within the system. In
ROS, it is a fundamental tool used as a basis for everything.
To understand them more clearly, it is important to note that
a node can only be used for one task—for example, handling
devices or computing algorithms. Although that negative effect
resolves itself due to the fact that nodes can communicate
with one another. A node can be programmed in multiple
languages, such as C++, Java, and Python. It can be a simple
or complicated program, depending on the situation and the
task it has to fulfill.

B. Goal

The robot will have a certain goal that it needs to achieve
with the least chance of getting into an obstacle. The robot will
initialize, analyze the received mini-map, and determine its

location before navigating to its destination. The environment
will be fluid, as we will test in different locations multiple
times to see if it is better at locating itself on clearer fields
or on more obstacle-heavy fields. The measurements that will
be taken are accuracy and error rate. These will be put into
a graph and then further analyzed and broken down into
sections, such as navigation capabilities, obstacle avoidance,
and route choice. The robot uses nodes [[]l, specifically two
nodes, to locate itself and the goal on the map. These nodes
carry coordinates that are scaled down on the map and then
up again for the real-life situation. This experiment requires a
specific ROSbot robot and a VPN connection over a laptop.
In order to receive the map and see what the robot sees, as
well as set an end goal, Gazebo needs to be installed . It
is a simulation that allows the user to see a simplified map
of what the robot has to work with, as well as areas that it
considers an obstacle or not. The map has color-coded areas
that have a specific cost of going there. The closer the route is
to the obstacle, the more it is a danger, and it will try to avoid
it. Ideally, the robot’s route should be efficient, cost-effective,
and collision-free [3].

Als Standard fest

Ws://172.16.2.1:8765 foxglove_bridge / 2025-02-21 3:17:30.739 PM CET

Figure 2: The map utilising nodes and creating a digital
environment, in which one can set destination nodes for the
robot

III. IMPLEMENTATIONS

Now, a test run will be conducted to evaluate how the
test robot perceives itself and navigates through different
environments. [4]. The series of tests will be run based on
difficulty, efficiency, and cost-effectiveness. Difficulty levels
are subjective; therefore, we categorized them based on the
number of obstacles and the complexity of the path (table []).
A. Static Environments

In the first experiments, the robot was observed interacting
with a static environment. It drove down a straight path with
an obstacle in its way, allowing the tests to evaluate its ability
to detect obstacles and navigate the most efficient route around
them. The difficulty level for the static environment had been
graded by the number of obstacles in its way. From that, it
had been assessed based on the efficiency of the route and
collisions. As one can see in Figure []Z[], it chooses the fastest
way around the obstacle to get to the destination safely. The

II

accuracy of the avoidance had been flawless (figure [3]), even
with the higher chance of cost-effectiveness. If this was done
with many small objects, the robot might try to find a way
around if the gaps between them were too narrow. Should this
not be the case, the robot will try to fit between the objects,
which can lead to collisions and loss of drive. Following the
completion of the experiments, it has been recorded that the
robot’s performance during the experiments produced the same
results, even with slight fluctuations. The results were divided
into five categories of difficulty.

static environment
B Test1

Test 3

B Test2

difficulty
10

8

6

navigation capabilities accuracy

efficiency cost effectiveness

Figure 3: The diagram reflecting tests run in the static envi-
ronment

dynamic environment
B Test1

Test 3

B Test2

difficulty
10

navigation capabilities . accuracy

efficiency cost effectiveness

Figure 4: The diagram reflecting the tests done in a dynamic
environment

B. Dynamic Environments

For the following set of experiments, tests had been run
to evaluate how the robot adjusts to ever-changing, dynamic
environments. The experiments had been conducted on a
straight path with different environmental changes that could
occur at any time. For example, a person walking in front of
it or a small object, such as a can, being dropped in front of
it. The difficulty had been measured by how unpredictable and
close the obstacles were. The difficulty was measured based
on the unpredictability and proximity of the obstacles. The

data gathered (figure [M]]) from these experiments show that
the robot can react to slow-moving objects and adapt its path
accordingly. However, it is not able to avoid fast-appearing
obstacles, especially if the obstacle appeared suddenly from the
side. Due to its slower reaction time, it often spilled the coffee
it was transporting. This issue could be addressed through
future improvements in navigation algorithms and reaction
speed, which will be further tackled in the proposed solutions.

Metric Definition
L How closely he
Navigation capa-
. follows the prede-
bilities .
termined path
. How fast HUSO
Efficiency reached the goal
Does he take the
Cost effectiveness | shortest possible
path
Accurac Does he run into
y obstacles
How difficult it
Difficulty was for him to get
to the goal

Table I: The direct depiction of all the information to the (figure
and 4)) diagrams and further definition and explanation of the
robots navigation course.

IV. PROPOSED SOLUTIONS

The results in this paragraph are reproducible and applicable
to real-world robotic designs. Therefore, they are purely based
on the factors observed during the experiments conducted
during testing. There will be little to no sources, as these are
observation-based solutions. Not every possible solution will be
covered, as there are quite a few, due to automated driving being
a fairly new technology. Additionally, some solutions are self-
explanatory and are not an issue with the robot itself but rather
with how people implement it into their daily lives. Furthermore,
this section will not cover any modifications to the coffee cup the
robot will be carrying, as this should have a universal solution
applicable to other automation systems. Many of the proposed
solutions would work best in combination, as they help eliminate
the chances of collisions and inefficient routes.

A. Predictive Modeling

Predictive modeling will utilize a model for the object that acts
as a dynamic obstacle and position it in front of the robot. It will
also use Al to predict the object’s course of action, increasing
the chances of avoiding it, even if its movements appear
unpredictable [S5]]. The ideal implementation would involve

I

running the modeling process simultaneously after both nodes
have been activated. It will take all obstacles into consideration
and, as the robot operates, provide real-time feedback and
updates on the object’s movements, allowing the robot time
to calculate a new route. This process will be applied to all
dynamic objects, ensuring that the end route is continuously
updated. Predictive modeling also works with patterns. It will
learn and store common obstacle patterns, such as doors opening
or a crowd of people walking in one direction. The robot can
then reuse this information to save time by applying existing
solutions instead of generating new ones from scratch.

B. More Sensors

The idea is to add sensors all around the robot so that it does
not have to rely solely on cameras. This way, new obstacles
coming from different directions will not pose as much of an
issue. The sensors will cover blind spots (figure [3]]) and provide
more information for the robot to work with. Additionally, they
will improve the robot’s ability to orient itself by enhancing
its environmental awareness. The sensors can be of different
types [6] to detect forms of motion that regular sensors cannot.
For example, an infrared sensor can detect objects even in
low visibility, allowing the robot to navigate without issues
in a dark room. The sensors can also work alongside the
camera to improve reaction speed over time. One drawback
is that an increased number of sensors could overwhelm the
system with excessive data input. However, with more advanced
programming, the robot can filter the gathered information,
extracting only the most relevant data without delays that could
slow down efficiency. Another advantage of having more sensors
is the presence of backup options. If one sensor malfunctions,
others can compensate by gathering the necessary data. A sensor
does not even need to completely fail—if one takes longer to
relay information to the robot, another can retrieve and transmit
it faster. This will help prevent the robot from needing to stop
and wait for data processing.

C. Preemptive Path Planning

To avoid the robot waiting for an obstacle to appear, it
can instead have a dynamic navigation strategy in the form
of preemptive path planning [7]. It will constantly reevaluate
and adjust the situation, rather than being forced to make last-
minute decisions. This approach allows the robot to consider
the entire environment and find the most efficient route without
needing significant adjustments when encountering obstacles.
It will scan ahead to analyze the path in real-time and adapt to
the situation without requiring last-second changes. Another
positive effect of such an algorithm is the ability to create
alternative routes. For example, in an office environment, areas
with high traffic, such as main doors and meeting halls, could
be predicted as obstacles. The robot could take a safer route that
avoids these high-traffic areas, thereby preventing collisions or
obstacles in general.

D. Buffer Zone
Adding a buffer zone is the most common method used to

avoid obstacle collisions. Cars such as Tesla use this in their
architecture. As seen in Figure , there are different layers of

Figure 5: Further sensors surrounding the robot, one on all the
bottom sides in a row, to predict unexpected obstacles on its
way.

Figure 6: The robot creating a new solution due to a path being
blocked by incoming traffic

the buffer zone, all of them monitored by cameras in a smaller
robot, sensors will be enough). Tesla’s buffer zone is quite large
and ensures that zones are detected depending on the distance.
The closer the object is to the car, the higher priority it has. If
there is an object outside or right on the border of the zone, it
will not be taken into account as quickly as when the danger is
closer [8]. The buffer zone provides an area around the robot that
acts as a safety border. It will detect when an obstacle is located
in the buffer zone and avoid direct collision with the vehicle. For
example, the coffee bot would slow down or move to the side to
avoid fully halting or spilling the coffee. The buffer zone works
with already pre-established sensors, therefore minimizing the

v

cost. It also provides more predictable behavior for humans
interacting with the automated bot. The buffer can be adapted
depending on how cost-effective the route or area is. If the cost-
effectiveness is high, the buffer zone will be large, for example,
when passing through doors or crowded halls. A larger buffer
zone is required for a cost effective route, due to the bot needing
more time in figuring out if there needs to be a change of path. If
the buffer zone is decreased, there are more chances of crashes.
However, if it is a very non-cost-effective route, a small buffer
zone can fully handle the situation. This will also work as an
extra layer of protection in combination with other methods.

Rearward Looking Side Cameras Wide Forward Camera Main Forwarc d Camera Narrow Forward Camera

Max distance 100m Max distance 60m Max distance 150m Max distance 250m

Rear View Camera Ultrasonics Forward Looking Side Cameras

Max distance 50m Max distance 8m Max distance 80m

Figure 7: Teslas implementation of the buffer zone, in their cars,
colourcoded by importance [El]

E. Priority Obstacle Handling

An algorithm can sort obstacles into separate categories
and priorities. Depending on the priority, the obstacle will be
regarded and dealt with first. For example, high priority would
include fast and sudden-moving obstacles, such as a rolling
can from a blind spot or a falling object. The algorithm uses
nodes to determine how to handle the object, which direction to
move, or if there is a need to slow down. This is often used in
technology that is not even fully automated; for instance, drones
with collision avoidance assign walls a higher priority than lesser
dangers such as leaves or branches. However, the issue arises
when the environment changes suddenly and frequently, which
can cause low-priority obstacles to be overlooked and lead to
collisions. That is a rare occurrence but not something that can
be entirely avoided, especially in high-paced environments. The
solution is to have a different algorithm for each priority. A
simplified version would be [10]: low = slight path adjustment,
medium = reduces speed, high = stops completely. This can be
known as the traffic light algorithm.
F. Node Storage

The robot will use multiple nodes that utilize a system
containing coordinates. With the first node, it locates itself in the
environment, receiving its own coordinates. The second node
is set by the user and is the destination location. The other
nodes will be there as static points that the robot has memorized
during older runs. This allows the bot to find the coordinates of
the location and determine the quickest path to the destination.

The nodes, also known as waypoints, are in the system prior
to the robot moving from its location. The nodes use the map
(figure [2])) to consider the route before actually driving. This
prevents the need to constantly create a new path, and it can
adapt to changes. However, sometimes it is not quick enough.
Now, how would that look if the path was not constant? If it had
less time to figure out what to do in a collision? It is actually
quite simple. If the destination and original location are the same
every time, instead of following the same path, it could adapt
to unexpected changes. By recalling the locations of high traffic
as well as the most common obstacle collisions, it can detect
shortcuts or safer, non-cost-effective routes (Figure [§])). This
small change can ensure that the bot will not spill the drink.
Another solution would be the addition of more nodes. They
could serve as additional waypoints to enhance navigation. If
Al is integrated into the system, the surrounding detection has
the chance to adapt on the fly with less need for constant storage.
It can store the more common danger areas and then rely on Al
to handle sudden issues.

new cost effective vdoor door . .
change//, Traffic area . destination node
HUSO _.-=~ 7(~
-
y

location node

Figure 8: navigation through node way points, and substitute of
check points if one of them is unreachable

G. Results

The proposed Solutions were put to the test and the following
data had been collected. The success rate, otherwise known
as how many times had the robot achieved its destination, is
an observation done through collection of data in experiments.
The reaction time consist of the speed that the robot detects
and avoids obstacles, as well as the comprehension of the
environment. Although the collisions are pretty self explanatory,
it is good to note that they are measured per a singular test.
Therefore, the data is more precise. The following table
reflects all the proposed solutions and gives back the outcomes
of the tests.

V. CONCLUSION

To conclude, the best way to eliminate most issues that arise
in automated driving is to use a combination of the solutions
provided. The best possible outcome would be to integrate Al in
predictive modeling with the addition of extra sensors and nodes.
This will give the robot the highest chances of being efficient
and avoiding collisions. However, this depends on the specific
situation and environment in which the robot is being used. A
simple setup at home would not require as many integrated add-
ons, as they would only make it more expensive. However, if you
are planning to have a coffee bot or multiple bots in a busy office
atmosphere, it is best to invest in as many safety precautions as
possible. Failing to do so could end up costing the company
more.

VI. ACKNOWLEDGEMENT

The authors would like to thank Dr. Michael Stifter for helping
with this project and giving us constructive criticism, which
greatly helped us improve our work. We would also like to
thank Ing. MSc. Eichberger for supporting us and helping us
stay on the right track. We couldn’t have done this without their
guidance. A thank you also goes out to James Gosling and
Matthias Rottensteiner for allowing us to conduct experiments
with their robot, HUSO, and for providing us with information
about how it worked.

REFERENCES
[1] rafal gorecki, “rosbot github.” |https:/github.com/husarion/
rosbot-autonomy,
[2] H. sp. z 0.0, “Staring huso and seeing the map.”

https://husarion.com/tutorials/howtostart/rosbot2pro-quick- start/
#remote-access-over-the-internet- vpn.

[3] N. Adiuku, “Learning-based navigation systems.” https://www.mdpi.com/
1424-8220/24/5/1377.

[4] R. R. . A. Kos, “Towards goal-directed navigation through combining
learning based global and local planners.” https://www.nature.com/
articles/s41598-024-72857-3.

[5] X.Z..Y.G..L. Guan, “reinforcement learning (drl).” https://pmc.ncbi.
nlm.nih.gov/articles/PMC6339171/.

[6] Quarz, “Ultrasonic sensor pinout.”
quartzcomponents.com/blogs/electronics- projects/
obstacle-avoiding-robot-using-1298n- h-bridge- motor-driver.

[7] P.Li, “Preemptive-level-based cooperative autonomous vehicle trajectory
optimization.” https://www.mdpi.com/2079-9292/14/1/71.

[8] Tesla, “Tesla automated driving.” https://www.tesla.com/support/auTesla.

[9] Tesla, “Teslas implementaion of the buffer zone.” https://www.tesla.com/

support/autopilot.

A. G, “obstacle avoiding robot.” https://www.instructables.com/

How-to- Make- Smart-Obstacle- Avoiding-Robot- Using- Ar/,

https://

[10]

Test Condition Success Rate (%) | Average Reaction Time (s) | Collisions per Test
Baseline (No AI) 40% 1.2 3 per test
Predictive Modeling 85% 0.8 1 per test
More Sensors 75% 1.6 0 per test
Preemptive path planing 55% 1.2 1 per test
Buffer Zone 70% 1.0 2 per test
Priority Obstacle Handling 80% 1.1 2 per Test
Node Storage 70% 1.3 3 per Test

Table II: The results of testing all the solutions

https://github.com/husarion/rosbot-autonomy
https://github.com/husarion/rosbot-autonomy
https://husarion.com/tutorials/howtostart/rosbot2pro-quick-start/#remote-access-over-the-internet-vpn
https://husarion.com/tutorials/howtostart/rosbot2pro-quick-start/#remote-access-over-the-internet-vpn
https://www.mdpi.com/1424-8220/24/5/1377
https://www.mdpi.com/1424-8220/24/5/1377
https://www.nature.com/articles/s41598-024-72857-3
https://www.nature.com/articles/s41598-024-72857-3
https://pmc.ncbi.nlm.nih.gov/articles/PMC6339171/
https://pmc.ncbi.nlm.nih.gov/articles/PMC6339171/
https://quartzcomponents.com/blogs/electronics-projects/obstacle-avoiding-robot-using-l298n-h-bridge-motor-driver
https://quartzcomponents.com/blogs/electronics-projects/obstacle-avoiding-robot-using-l298n-h-bridge-motor-driver
https://quartzcomponents.com/blogs/electronics-projects/obstacle-avoiding-robot-using-l298n-h-bridge-motor-driver
https://www.mdpi.com/2079-9292/14/1/71
https://www.tesla.com/support/auTesla
https://www.tesla.com/support/autopilot
https://www.tesla.com/support/autopilot
https://www.instructables.com/How-to-Make-Smart-Obstacle-Avoiding-Robot-Using-Ar/
https://www.instructables.com/How-to-Make-Smart-Obstacle-Avoiding-Robot-Using-Ar/

	Introduction
	Experiment Setup
	Nodes
	Goal

	Implementations
	Static Environments
	Dynamic Environments

	Proposed Solutions
	Predictive Modeling
	More Sensors
	Preemptive Path Planning
	Buffer Zone
	Priority Obstacle Handling
	Node Storage
	Results

	Conclusion
	Acknowledgement
	References

