
1 
Extension Boards ©2025 IEEE 

Extension Boards for the Wombat 
 

Christian Kargl  

HTL St. Pölten  

St. Pölten, Austria 

christian.kargl21@gmail.com 

Manuel Bichl 

HTL St. Pölten  

St. Pölten, Austria 

manuel.bichl@htlstp.at 

Peter Strommer 

HTL St. Pölten  

St. Pölten, Austria 

p.strommer@outlook.at 

 

Christoph Hackl 

HTL St. Pölten  

St. Pölten, Austria 

christoph.hackl@htlstp.at 

 

 

 

 

 

 

Abstract—This paper presents the implementation and its 

uses of several extension boards for the Wombat. Our boards 

include a servo-shield and a gpio extender, which enhances the 

functionality and capability of the Wombat system. The servo-

shield allows precise control of multiple servo motors, making it 

ideal for ECER. Meanwhile, the gpio extender expands the 

number of available input and output pins. 

 

Keywords—Servo-Shield 

I. INTRODUCTION  

The Wombat controller is broadly used at the competitions 

of ECER. With its sensor and servo ports it is capable of 

various tasks, but the number of ports may be limiting for 

more advanced ones. To address this limitation, teams at 

ECER can expand their Wombat controllers with additional 

shields and extender boards, enabling them to control more 

peripherals. This paper focuses on extensions that 

communicate via the I²C bus, specifically the Adafruit 

Servo Shield, which utilizes the PCA9685 microcontroller, 

and the GPIO Extender, which employs the PCF8574 chip. 

II.  SOFTWARE DEVELOPMENT 

A. Suitable Libraries 

The “Servo-Shield” and “Gpio-extender” both needed special 
libraries to control and manipulate. After careful 
consideration, the “Adafruit Servokit” and “Adafruit 
PCF8574“ libraries were chosen. These libraries provided 
easy-to-use, high-level APIs and simultaneously the 
flexibility that was required for this project.  
Usage of Libraries: 

 

1. Adafruit Servokit 

 
The Servokit library from Adafruit was able to easily 
communicate with the “PCA9685” microcontroller. This 
library is used to control an additional 16 servos and 
continuous servos via the I²C bus. The usage of the library in 
Python is as follows: 

 

from adafruit_servokit import ServoKit 

kit = ServoKit(channels=16) 

 

After creating the servokit object and passing the appropriate 
number of channels as an argument, it is ready to use. The 
library can control both standard servos and continuous 
servos. The difference between the two is that standard servos 
operate in a specific range of motion, for example, 0–180 
degrees. On the other hand, the continuous servos act more 
like conventional motors, meaning they can rotate freely. 

 

1.1 Servos 

 

kit.servo[0].angle = 0 

This code would, if executed correctly, modify the signal sent 
to the servo connected on the shield's number 0 pin so that it 
moves to the desired angle. 

 

1.2 Continous Servos 
 

kit.continuous_servo[1].throttle=0 

This code modifies the signal so that the continuous servo 
stops moving. The range of the value is between -1 and 1. 
Some continuous servos could require some fine-tuning by 
turning a potentiometer directly on the physical servo. But if 
that is not present, the PWM signal can be modified in the 
code to calibrate it. This will be explained in further detail later 
in the paper. 

 

 

2. Adafruit PCF8574 

 
This library is used to control the additional 8 gpio pins we 
added to the Wombat via the I²C bus. Using the library is 
quite intuitive since it is very similar to the native way of 
controlling gpio pins on the Raspberry Pi. Usage of the 
library in Python is as follows: 

from adafruit_pcf8574 import PCF8574 

import board 

pcf = PCF8574(board.I2C(), address=0x27) 

After the object has been created, it can be used like this to 
write to a specific pin: 

write_pin(PIN, VALUE) 

The PIN value can range anywhere from 0 to 7, and the value 
is either 0 or 1. Reading from the Extender is also quite easy. 

pcf.read_pin(PIN) 

Again, the PIN value can range from 0 to 7. 



2 
Extension Boards ©2025 IEEE 

B. Calibrating Servos 

Servo pulse timing varies between different brands and 
models. Due to the analog nature of the control circuit, there 
is often variation even between servos of the same brand and 
model. For precise position control, the minimum and 
maximum pulse widths must be calibrated in the code to 
match the known positions of the servo. 

 

1) Finding the Minimum Pulse Width  

kit.servo[0].set_pulse_width_range(SERVOMIN, 

SERVOMAX) 

kit.servo[0].angle = 0 

 

Using the provided example code, the SERVOMIN value is 
adjusted until the low point of the servo’s sweep reaches the 
minimum range of travel. It is recommended to approach this 
gradually and stop before the physical limit of travel is 
reached.  

 

2) Finding the Maximum Pulse Width  

Similarly, the SERVOMAX value is adjusted in the  example 
code until the high point of the servo’s sweep reaches the 
maximum range of travel. Again, this should be approached 
gradually to avoid reaching the physical limit of travel. 

 

 

III. HARDWARE EXPLANATION 

1. Servo board 

Driving servo motors using the adafruit servokit library is 

considered straightforward, but each servo consumes a 

dedicated pin, along with some processing power from the 

Raspberry Pi. The Adafruit 16-Channel 12-bit PWM/Servo 

Driver is designed to control up to 16 servos over I2C using 

only 2 pins. The onboard PWM controller is capable of 

driving all 16 channels simultaneously without requiring 

additional processing overhead from the Microcontroller or 

Raspberry PI. Furthermore, up to 62 of these drivers can be 

chained together, allowing control of up to 992 servos, all 

using the same 2 pins.  
 

 

Fig.  1 Servo-Shield 

Two sets of control input pins are located on either side of the 

board. Both sets of pins are identical, enabling multiple 

boards to be easily chained together by connecting them side 

by side.  

 

 

 

Power Pins: 

• GND: This pin is used for power and signal ground and 

must be connected.  

 

• VCC: This pin supplies logic power and should be 

connected to the desired logic level for the PCA9685 

output. Since the WOMBAT already uses the I²C pins, it 

is recommended to match the logic voltage of 3.3V. 

 

• V+: This is an optional power pin that can be used to 

supply power to the servos. If servos are not being used, 

this pin can remain disconnected. It is not utilized by the 

chip itself. When used, an input of 5-6V DC is 

recommended, which can be sourced from the Raspberry 

Pi. However, as the supply current of the Raspberry Pi is 

limited, a power source external to the Wombat is 

recommended. Otherwise, the Wombat could be 

damaged, or the servos might not receive sufficient 

power to operate. Keep this in mind when using multiple 

“extender boards”. 
 

Control Pins: 

• SCL: The I²C clock pin, which is connected to the 

microcontroller’s I²C clock line. It can operate with 3V 

or 5V logic and includes a weak pull-up to VCC. 

 

• SDA: The I²C data pin, which is connected to the 

microcontroller’s I²C data line. It can also operate with 

3V or 5V logic and includes a weak pull-up to VCC. 

 

• OE: The output enable pin, which can be used to quickly 

disable all outputs. When this pin is set to low, all outputs 

are enabled. When set to high, the outputs are disabled. 

By default, it is pulled low, making it an optional pin. 
 

Output Ports: 

Sixteen output ports are provided, each consisting of three 

pins: V+, GND, and the PWM output. Each PWM output 

operates independently, but all must share the same PWM 

frequency. The maximum current per pin is limited to 25 mA. 
 

 

Connecting to the Raspberry Pi  

The PWM/Servo Driver is connected to the Raspberry Pi 
using I²C, requiring only five wires: 

• 3.3V → VCC (this supplies power to the breakout 

board only, not the servos).  

• GND → GND.  

• 5V → V+ (while it is not ideal to use the Raspberry 

Pi’s 5V directly, it is the simpler option).  

• SDA → SDA.  

• SCL → SCL.  

 

 



3 
Extension Boards ©2025 IEEE 

Chaining Multiple Boards 

If more than 16 servos need to be controlled, additional 

boards can be chained together. With headers present on both 

sides of the boards, the wiring process is simplified, requiring 

only a 5-pin parallel cable to connect one board to the next.  
 

Addressing the Boards 

Each board in the chain must be assigned a unique address. 

This is accomplished using the address jumpers located on 

the upper right edge of the board. The base I²C address for 

each board is 0x40. The binary address, which is programmed 

using the address jumpers, is added to the base I²C address. 

To program the address offset, a drop of solder is used to 

bridge the corresponding address jumper for each binary '1' 

in the address. 

 

• Board 0: Address = 0x40, Offset = binary 00000 (no 
jumpers required).  

• Board 1: Address = 0x41, Offset = binary 00001 
(bridge A0).  

• Board 2: Address = 0x42, Offset = binary 00010 
(bridge A1).  

• Board 3: Address = 0x43, Offset = binary 00011 
(bridge A0 & A1).  

• Board 4: Address = 0x44, Offset = binary 00100 
(bridge A2).  

 

2. Gpio expander 

The idea to implement a gpio expander came from the servo 

expander board. After noticing that no motor pins were free 

and that a MOSFET still needed to be powered, the 

conclusion was to simply add another board—this time, a 

gpio expander board. 

 

After choosing the PCF8574 gpio expander board, the 

installation went smoothly, except for the unnoticed pull-up 

resistors on the SDA and SCL lines. After identifying the 

issue and desoldering them, the gpio expander worked, and 

we had another 8 gpio Pins. 

 

Again, there were control inputs on both sides of the board, 

making chaining them quite easy. Just make sure to desolder 

the pull-up resistors; otherwise, issues may arise. 

You can chain up to 8 expanders with the 3 jumpers on the 

board for changing the address and having a total of 64 gpio 

Pins added. 

 
Power Pins: 

For the power pins, it is the same as the servo expander board, 

except that there is no V+. Therefore, keep in mind that all 

devices connected to or powered by the board operate at 

3.3V. This may cause issues with sensors that operate at 5V. 

Other than this change, you can simply just chain it to the 

servo extender port. 

 

 

 

How it works: 

 

This chip does not have a pin direction register. You cannot 

set the pins to be input or output - instead each pin has two 

possible states. Basically, you can think of it as an open-drain 

output with a 100K resistor pull-up built in.  

• Option one: Lightly pulled up 'input' - by default it will 

read as a high logic level, but connecting the gpio to 

ground will cause it to read as a low logic level.  

 

• Option two: Strong 20mA low-driving transistor sink 

output. This means the output is 'forced' to be low and 

will always read as a low logic level. 

 

The pin direction / state thing is a little odd but it actually 

works fine for many purposes as long as you know what to 

expect. 

For example, if you want to read a button or switch, connect 

one side to the PCF and the other side to ground. Then set the 

pin to 'light pull-up input'. When the button is pressed it will 

read low, when released it will read high. 

If you want to control an LED, connect the anode to positive 

voltage through a resistor. When the PCF pin is set to 'light 

pull-up input' the LED will be off. When the PCF pin is set to 

'strong ground output' the LED will connect to ground and 

turn on. 

If you want to send a gpio output logic level to some other 

device or peripheral, the light pull-up acts as high logic out, 

the strong ground output acts as low logic out. 

If you want to receive a gpio input logic level, set the pin to 

light pull-up and then read the pin to determine if the gpio 

input is high or low. 

Basically, the only thing to watch for is you cannot drive an 

LED that is expecting the expander gpio to go high to turn on 

the LED, or connect a button input to a positive voltage 

without adding an additional pull-down resistor.  

 

Since this is very confusing when hearing it for the first time, 

you shouldn’t worry too much since most of it is taken care 

of in the Adafruit PCF8574 library - you can pretend it has 

input/output modes and the library will fake out what you are 

expecting. 

 

IV. REFERENCES 

[1] Adafruit Servo Kit:  

https://learn.adafruit.com/adafruit-16-channel-servo-driver-

with-raspberry-pi/using-the-adafruit-library 

 

[2] Adafruit 16-Channel 12-bit PWM/Servo Driver 

https://www.adafruit.com/product/815 

 

[3] Adafruit PCF8574 I2C GPIO Expander 

https://www.adafruit.com/product/5545 

 

[4] Adafruit PCF8574 I2C GPIO Expander Arduino library 

https://github.com/adafruit/Adafruit_PCF8574 

 

[5] Adafruit PCF8574 I2C GPIO Expander python library 

https://learn.adafruit.com/adafruit-pcf8574/python-

circuitpython 

https://github.com/adafruit/Adafruit_CircuitPython_PCF8574
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/using-the-adafruit-library
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/using-the-adafruit-library
https://www.adafruit.com/product/5545
https://github.com/adafruit/Adafruit_PCF8574

