
Improving the Navigation with Mecanum Wheels in
Botball

Felix Steinwendter, Sebastian Munkhbat
Higher Technical Federal Teaching and Research Institute

Department of Computer Science
2700 Wiener Neustadt, Austria

Corresponding author’s email: felix.steinwendter@gmail.com

Abstract—This paper discusses the implementation of a
mecanum-wheel-based robot for the Botball tournament. The
omni-directional wheel design provides a high degree of ma-
neuverability and flexibility, making it highly advantageous in
areas with limited turning space. This paper derives equations
for navigating a mecanum-wheeled robot along predefined paths.
To mitigate real-world trajectory deviations, software-based mo-
tor compensation techniques are implemented to correct wheel
misalignment.

Index Terms—mecanum wheel, Botball, robotics, omni-wheel

I. Introduction
The mecanum wheel, also referred to as the Swedish

wheel or Ilon wheel, is a form of an omni-directional wheel
composed of a series of rubberized rollers mounted along its
perimeter at a 45° angle. A typical mecanum-wheel configura-
tion consists of four wheels arranged in a rectangular pattern,
with their axle perpendicular to the robot’s body. The wheels
alternate between left- and right-handed rollers, ensuring that
rollers on diagonally opposite wheels are aligned parallel to
each other.

Due to this design, a wheel primarily generates force
towards a diagonal in the robot’s reference frame. Through
careful manipulation of each wheel’s rotational speed and
position on an inertial reference frame, arbitrary longitudinal
and lateral movement can be achieved. Furthermore, low-
friction rotation relative to the robot’s center point can be
incorporated, allowing for smooth motion along user-defined
trajectories.

These unique characteristics are useful for a wide variety of
applications, ranging from extraterrestrial exploration vehicles
to omnidirectional wheelchairs or transportation vehicles such
as forklifts [1].

II. Controlling the robot
A. Equipment

The robot in Fig.1, powered by a robotics controller based
on the Raspberry Pi 3B+, was designed based on a rectangular
metal chassis symmetrically equipped with four mecanum
wheels. Their velocities can be precisely and independently
controlled using pulse-width modulation (PWM) driven mo-
tors. A laser-cut wooden alignment tool was used to ensure
no discrepancies in initial positioning across test runs. To

Figure 1: The robot used for testing

avoid manual intervention with the robot at runtime, test runs
were initiated remotely, and optionally a light sensor serving
as a start signal was integrated into the robot. Additionally,
the placement of the servos, robotics controller (codenamed
”wombat”) and robotic claw arms were placed in a way that
equally distributes weight across the platform.

B. Kinematic Model

In the provided image and the robot used for the tests,
both the front and rear axles are the same width. However,
real-world implementations of such a robot could include
different axle widths for various reasons. While these dis-
crepancies would not affect straight and sidewards motion,
diagonal or omnidirectional movements could be influenced, as
asymmetric force distribution would introduce deviations from
the expected path. To counteract, continuous monitoring and
correction would be necessary, if the mathematical equations
for calculating velocities are not adapted accordingly.

The robot’s kinematic model’s system velocities and con-
figuration values as visualized in Fig. 2 for translational and
rotational motion are defined as the following:

• 𝐻,𝑌, 𝑋: inertial frame of the reference point H in the
inertial basis;

• 𝑂: robot’s x and y position relative to it’s inertial frame

I

𝑌

𝑋
𝐻

𝑣𝑟𝑖

𝑣𝑤𝑖

𝑣𝑟𝑖𝑣𝑤𝑖

𝑣𝑟𝑖

𝑣𝑤𝑖

𝑣𝑟𝑖𝑣𝑤𝑖

𝑥

𝑦

𝑣𝑥

𝑣𝑦

𝑙𝑥𝑖

𝑙𝑦𝑖

𝑤𝑧
𝑂

Figure 2: Schematic of the robots geometry

• 𝑥, 𝑦: coordinate system centered at the robot’s body
associated.

• 𝑣𝑥, 𝑣𝑦 [m/s]: robot’s linear velocity

• 𝜔𝑧 [rad/s]: robot’s angular velocity

• 𝑣𝑤𝑖 (0 ≤ i ≤ 3) [m/s]: velocity vector of the i-th wheel
corresponding to wheel revolutions

• 𝑣𝑟𝑖 (0 ≤ i ≤ 3) [m/s]: velocity vector of the i-th wheel
corresponding to roller revolutions

• 𝑙𝑥𝑖 , 𝑙𝑦𝑖 (0 ≤ i ≤ 3): distance between the i-th wheel and the
robot’s center

• 𝑑𝑤: absolute euclidean distance between a wheel and the
robot’s center

• 𝜔𝑖 (0 ≤ i ≤ 3) [rad/s]: i-th wheel’s angular velocity

The forward kinematic equations for the robot are derived as
follows [2]: 

𝜔1
𝜔2
𝜔3
𝜔4

 =
1
𝑟


1 −1 −𝑑𝑤
1 1 𝑑𝑤

1 1 −𝑑𝑤
1 −1 𝑑𝑤



𝑣𝑥
𝑣𝑦
𝜔𝑧

 (1)

A function mecanum_setwhlspd(double vx,
double vy, double wz) has been incorporated into the
C++ robot library, which applies this equation to calculate the
appropriate power to exert to the PWM-controlled motors of
each wheel. It expects a target velocity as a vector for both the
x and y axes and a target rotation around the robot’s center as
it’s arguments.

C. Kinematics Theory
This section of the paper will focus on elaborating on the

variables visualized in Fig.2, as well as explaining how they are

used to mathematically derive the equation allowing for accurate
control. Each wheel, denoted as the i-th wheel, has two rotary
components, the wheel itself and the rollers attached to it. The
variable 𝑣𝑤𝑖 refers to the velocity of the i-th wheel measured
in m/s. 𝑣𝑟𝑖 is used to describe the velocity of the rollers on the
wheel i in m/s. The distance between a wheel and the robots
center is represented as the vector (𝑙𝑥𝑖 , 𝑙𝑦𝑖). Since 𝑣𝑟𝑖 cannot
be easily measured, it is calculated using the formula

𝑣𝑟𝑖 =
1

𝑐𝑜𝑠(45) ∗ 𝑟𝑟 ∗ 𝜔𝑖

where 𝑟𝑟 equals the radius of the rollers and𝜔𝑖 a wheel’s angular
velocity measured in rad/s. According to the following equations

𝑣𝑆𝑖 = 𝑣𝑟𝑖 ∗ 𝑠𝑖𝑛(𝛾𝑖)

𝑣𝐸𝑖
= 𝑣𝑟𝑖 ∗ 𝑐𝑜𝑠(𝛾𝑖) + 𝜔𝑖 ∗ 𝑟𝑖

in which 𝜔𝑖 equates to the angle between 𝑣𝑤𝑖 and 𝑣𝑟𝑖 , 𝛾𝑖
represents the angle between the previously calculated 𝑣𝑟𝑖 and
𝑣𝑤𝑖 , and lastly 𝑟𝑖 is the radius of the i-th wheel, the vectors and
the speed at which each wheel moves are now known. 𝑣𝐸𝑖

and 𝑣𝑆𝑖
represent the velocity vector of one of the mecanum wheels and
the velocity vector of the rollers on the same wheel respectively.
The omni-directional movement is achieved by coordinating the
four wheels so that desired velocity vectors reinforce each other,
while undesired forces cancel out. This principle is most evident
when moving forward or backward, where all four wheels rotate
at the same speed in the same direction. However, if one wheel
loses traction or slows unexpectedly, the robot’s movement may
become unstable. This becomes most obvious when wanting
to accelerate forward or backwards, since you merely need to
turn all four motors at the same time, with the same speed, but
should one wheel have a worse grip on the ground or suddenly
decelerate, the robot will suddenly move differently.

To make the robot turn on its own axis, the wheels need to
be alternatively spun forward or spun backward, depending on
the direction in which the robot needs to turn. To have accurate
turns, measured in the degrees turned from the current position,
the angle turned in a single tick and the original orientation will
be taken and used to calculate the needed turn time. To ensure
the accuracy in real life application, a PID controller will be
used as a feedback loop for the robot. This will be explored in
more detail further on.

III. Real Life Application
While omni-directional robots have a wide variety of usecases

[1], the practical scope is narrowed down to use within the
Botball robotics competition by KIPR (kipr.org). Thus, the
experiments focus on evaluating the performance of such robots
in competitive environments. For that reason, driving as fast as
possible is essential. Experimental results were obtained using
the robot shown in Fig. 1, a custom-designed robot made for the
Botball competition. The measurements as described in the next
section were conducted by placing the robot in a fixed location
using a custom alignment tool to ensure consistent placement.
Then, the robot was programmed to follow predefined paths or
travel in a specific direction. This allowed us to collect reliable

II

data under controlled conditions. An onboard gyroscope was
used to record rotational drift, wheel encoders to collect data
about the distance traveled, and a measuring tape for manual
verification. Each test was repeated multiple times and results
averaged to account for variability caused by external factors.

IV. Quantifying drift over time
The 45-degree angled rollers, while enhancing mobility,

introduce higher friction than conventional wheels. This leads
to increased lateral and rotational drift, affecting movement
precision. Uneven floors and slippery surfaces further negatively
impact reliability. The most common driving directions, 0°, 45°
and 90°, are therefore analyzed to provide data on drift when
driving in each of them as in Fig.3, respectively.

(a) 0° (b) 45° (c) 90°

Figure 3: Fundamental movement directions

A. Measurement methodology
To be capable of making meaningful predictions about

drift in an isolated environment, specifically a known uniform
surface and a fixed robot configuration, two system variables
have to be gathered for strictly linear movement: the rota-
tional drift constant and the lateral drift constant. There are
a number of methods by which both can be obtained, but
the decision was made to employ manual measurements in
combination with onboard instruments in a realistic setting
representing a Botball table. The rotational drift constant is
obtained by placing the robot at a fixed starting position, and
the mecanum_setwhlspd() as described in Section II is
employed to steer the robot in the desired direction. After a few
seconds, the motors are halted and the rotation reported by the
gyroscope is read.

The sideways drift is trickier to accurately determine, as it is
first necessary to reduce rotational drift to near zero. Using
a closed-loop proportional-integral-derivative (PID) control
system, specifically designed to stabilize the yaw of the robot,
negating rotational drift, the lateral drift can be extracted
effectively. The PID error feedback was taken directly from
the onboard gyroscope, reporting yaw variations at a precision
of 1

100 of a degree. The PID control law was defined as

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫ 𝑡

0
𝑒(𝜏) 𝑑𝜏 + 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

, (2)

where 𝑢(𝑡) is the control output, 𝑒(𝑡) the error feedback (delta
between the desired and current yaw), and 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑

are the proportional, integral, and derivative gains, respectively.
These were empirically tuned to approach zero rotational drift
with no visible overshoot and good reliability even over longer
distances, keeping the robot within 1° of variation between the

starting and end point. A proportional controller using the same
feedback was tested, and achieved similarly consistent results.

The test procedures were repeated ten times, and the averaged
results are displayed in table I, listing the average velocity as well
rotational and lateral drift per second.

Table I: Measurement data

Data

average velocity rotational drift lateral drift

0° 0.24 m/s 1.4°/s 0.01 m/s
45° 0.15 m/s 2.4°/s 0.03 m/s
90° 0.18 m/s 9.87°/s 0.03 m/s

This table summarizes the robot’s path data for the three initial
orientation angles in Fig.3. Each row represents the average results of

each ten test cases, and the columns provide the following
information:

• average velocity [m/s]: The average velocity the bot was traveling
at during the test, calculated by dividing the total distance driven
by the time taken.

• rotational drift [/s]: The average rotational drift being accumu-
lated every second.

• lateral drift [m/s]: The average lateral drift being accumulated
every second.

B. Trajectory deviation formula
Using the forward velocity, sidewards drift and rotational drift

constant obtained, a formula for the position (𝑥, 𝑦) of the robot
after 𝑁 seconds can be derived.

The paramters are defined as follows:

• 𝜔 [rad/s]: rotational drift constant converted to radians per
second

• 𝑑𝑣 [m/s]: sidewards drift constant in meters per second

• 𝑑𝑓 [m/s]: forward velocity constant in meters per second

• 𝑁 [s]: time in seconds

• 𝑡 [rad]: orientation angle in radians

• 𝜃 [rad]: orientation angle in radians

It is being assumed that the robot’s origin is at (0, 0 in
world space, with an initial orientation angle 𝑡 = 0. The
initial orientation 𝜃 is assumed to be along the positive y axis:
𝜃 (0) = 90 = 𝜋

2 radians.
Since these calculations require radians instead of degrees,

all constants previously denoted in degrees have to be converted
using the formula

𝜔 =
𝜔deg𝜋

180
rad

The first part of the equation is the orientation as a function
of time. 𝜃 changes linearly with time due to the assumption of a
constant rotational drift:

𝜃 (𝑡) = 𝜃 (0) + 𝜔𝑡 = 𝜋

2
+ 𝜔𝑡

The second part is the velocity component, composed of a
forward velocity 𝑣 𝑓 :

III

𝑣 𝑓 ,𝑥 = 𝑣 𝑓 cos(𝜃 (𝑡))

𝑣 𝑓 ,𝑦 = 𝑣 𝑓 sin(𝜃 (𝑡))

and a second part, the sideways drift 𝑣𝑠 , acting perpendicular
to the forward direction (𝜃 (𝑡) − 𝜋

2 :

𝑣𝑠,𝑥 = 𝑣𝑠 cos
(
𝜃 (𝑡) − 𝜋

2

)
= 𝑣𝑠 sin(𝜃 (𝑡))

𝑣𝑠,𝑦 = 𝑣𝑠 sin
(
𝜃 (𝑡) − 𝜋

2

)
= −𝑣𝑠 cos(𝜃 (𝑡))

The resulting differential equation is thus:

𝑑𝑥

𝑑𝑡
= 𝑣 𝑓 ,𝑥 + 𝑣𝑠,𝑥 = 𝑣 𝑓 cos(𝜃 (𝑡)) + 𝑣𝑠 sin(𝜃 (𝑡)),

𝑑𝑦

𝑑𝑡
= 𝑣 𝑓 ,𝑦 + 𝑣𝑠,𝑦 = 𝑣 𝑓 sin(𝜃 (𝑡)) − 𝑣𝑠 cos(𝜃 (𝑡))

Substituting 𝜔(𝑡) and its trigonometric identities:

cos
(𝜋

2
+ 𝜔𝑡

)
= − sin(𝜔𝑡), sin

(𝜋
2
+ 𝜔𝑡

)
= cos(𝜔𝑡)

The velocity component is simplified to:

𝑑𝑥

𝑑𝑡
= 𝑣 𝑓 (− sin(𝜔𝑡)) + 𝑣𝑠 cos(𝜔𝑡) = −𝑣 𝑓 sin(𝜔𝑡) + 𝑣𝑠 cos(𝜔𝑡)

𝑑𝑦

𝑑𝑡
= 𝑣 𝑓 cos(𝜔𝑡) − 𝑣𝑠 (− sin(𝜔𝑡)) = 𝑣 𝑓 cos(𝜔𝑡) + 𝑣𝑠 sin(𝜔𝑡)

To get to a specific x and y position after N seconds, the
equation is integrated from 𝑡 = 0 to 𝑡 = 𝑁:

𝑥(𝑡) =
∫ 𝑡

0

(
−𝑣 𝑓 sin(𝜔𝑠) + 𝑣𝑠 cos(𝜔𝑠)

)
𝑑𝑠

𝑦(𝑡) =
∫ 𝑡

0

(
𝑣 𝑓 cos(𝜔𝑠) + 𝑣𝑠 sin(𝜔𝑠)

)
𝑑𝑠

Next, the evaluation of both integrals:
For 𝑥(𝑡):

𝑥(𝑡) =
[𝑣 𝑓

𝜔
cos(𝜔𝑠) + 𝑣𝑠

𝜔
sin(𝜔𝑠)

] 𝑡
0

𝑥(𝑡) =
𝑣 𝑓

𝜔
(cos(𝜔𝑡) − 1) + 𝑣𝑠

𝜔
sin(𝜔𝑡)

For 𝑦(𝑡):

𝑦(𝑡) =
[𝑣 𝑓

𝜔
sin(𝜔𝑠) − 𝑣𝑠

𝜔
cos(𝜔𝑠)

] 𝑡
0

𝑦(𝑡) =
𝑣 𝑓

𝜔
sin(𝜔𝑡) + 𝑣𝑠

𝜔
(1 − cos(𝜔𝑡))

The final equation to calculate or position at 𝑡 = 𝑁 is:

𝑥(𝑁) =
𝑣 𝑓

𝜔
(cos(𝜔𝑁) − 1) + 𝑣𝑠

𝜔
sin(𝜔𝑁),

𝑦(𝑁) =
𝑣 𝑓

𝜔
sin(𝜔𝑁) + 𝑣𝑠

𝜔
(1 − cos(𝜔𝑁)) ,

There is a special case in which𝜔 = 0 (no rotation all), where
the motion is linear and can be reduced to:

𝑥(𝑁) = 𝑣𝑠𝑁, 𝑦(𝑁) = 𝑣 𝑓 𝑁

This simplified equation is applicable for modeling the
trajectory with rotational drift correction enabled, as visualized
in Fig.4. Using this approximating equation, the position over
time assuming no correction and with rotational correction are
graphed.

1 2 3 4 5 6 7

2

4

6

8

deviation (x) [meters]]

deviation (y) [meters]

Deviation from a target path

0° - Fig. 3a
45° - Fig. 3b
90° - Fig. 3c

Figure 4: Physical measurements taken at certain distances
are used to approximate a function correlating to the absolute
deviation from a straight-line path (x and y - axis) when driving
in each of the primary directions. More test runs are conducted
without any trajectory control mechanisms in place, their final
positions visualized as crosses, to validate the correctness of
the approximations. Additionally, paths without any rotational
drift are graphed (dotted lines). They can be used to loosely
approximate real world paths with any of the correction methods
described in IV-A applied.

V. Countering lateral drift

For certain applications, unlike the Botball competition,
it may be desirable to minimize the deviation even further.
Negating lateral drift to is essential to achieve that goal;
theoretical solutions are conceptualized within this section.

A. Constant counter-steering

The sideways drift velocity, denoted 𝑣𝑠 and measured in
meters per second, corresponds to a velocity perpendicular to
the current heading. If 𝑣𝑠 > 0 corresponds to a drift to the
left, 𝑣𝑠 < 0 effectively induces a countering drift to the right.
By selecting an appropriate value for 𝑣𝑠 , one can counteract
lateral drift. However, different drift constants as the orientations
changes and possible variations across multiple runs complicate
this approach, and due to it not being a viable option for curved
paths either, it remains theoretical.

IV

B. Feedback-based Control Strategies
Practical alternatives may rely on feedback control to min-

imize lateral displacement. A simple approach could be to
employ visual indicators to derive positional data from, for
example ArUco markers to calculate an accurate pose, a line
to follow or other external hints. Optionally, an accelerometer-
based PID could be fine-tuned to deliver the desired counter-
steering motion. Furthermore, predictive models could min-
imize deviations by predicting future lateral movement and
adjusting in a preventive manner. Beyond adjustments, other
mechanisms can effectively work against lateral drift. If the
system allows for accurate control over each motors velocity,
slower rotations at critical sections could lessen unwanted
effects. These strategies are particularly effective in real-world
scenarios involving external disturbances.

VI. Conclusion
The unique properties of mecanum wheels enabled omni-

directional movement, allowing for motion in all directions
and rotation about the z axis. Straight-line motion on a 2-
dimensional plane could be achieved entirely without altering
the robot’s heading, while following curved trajectories is made
possible by adjusting it’s rotation. However, the design of
mecanum wheels and their rollers introduce drift, becoming
an apparent issue in precise navigation. Several experiments
were conducted to assess its impact on straight-line motion. The
results lead to the conclusion that maintaining a stable heading
is the most effective measure to counter the drift. The material
properties of the mecanum wheel rollers and the track surface
have been shown to have a significant effect on course stability.
Therefore, it is essential that all tests are performed on a uniform,
clean surface in order to mitigate these effects. To successfully
eliminate rotational drift, the effectiveness of a closed-loop
PID controller based on gyroscopic readings was demonstrated.
This stabilization reduces total drift down to lateral drift, for
which control methods have been proposed. Their applicability
depends heavily on usecase and remains largely unexplored, but
it’s theorized that a position-aware driving model could yield a
more robust system and improved accuracy.

Acknowledgement
The authors would like to thank Dr. Michael Stifter for

supporting the paper in providing both writing and technical
assistance. They would also like to thank Dipl.-Ing. Harald
Haberstroh, who has so kindly offered his skills and years of
knowledge to robo4you.

References
[1] F. Adăscăliţei and I. Doroftei, “Practical applications for mobile robots

based on mecanum wheels-a systematic survey,” The Romanian Review
Precision Mechanics, Optics and Mechatronics, vol. 40, pp. 21–29, 2011.

[2] N. G. Hamid Taheri, Bing Qiao, “Kinematic model of a four
mecanum wheeled mobile robot,” International Journal of Computer
Applications, vol. 113, no. 3, pp. 6–9, March 2015. [Online]. Available:
https://ijcaonline.org/archives/volume113/number3/19804-1586/

[3] A. Gfrerrer, “Geometry and kinematics of the mecanum wheel,”
Computer Aided Geometric Design, vol. 25, no. 9, pp. 784–791,
2008, classical Techniques for Applied Geometry. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167839608000770

[4] N. Tlale and M. de Villiers, “Kinematics and dynamics modelling
of a mecanum wheeled mobile platform,” in 2008 15th International
Conference on Mechatronics and Machine Vision in Practice, 2008, pp.
657–662.

[5] D. Xu and Y. Gao, “Modeling and analysis of mecanum wheel and its
four-wheel system.”

[6] L. Lin and H. Shih, “Modeling and adaptive control of an omni-mecanum-
wheeled robot,” Intelligent Control and Automation, vol. 4, pp. 166–179,
2013.

[7] H. Xu, G. Yu, Y. Wang, X. Zhao, Y. Chen, and J. Liu,
“Path planning of mecanum wheel chassis based on improved a*
algorithm,” Electronics, vol. 12, no. 8, 2023. [Online]. Available:
https://www.mdpi.com/2079-9292/12/8/1754

[8] S. Dickerson and B. Lapin, “Control of an omni-directional robotic vehicle
with mecanum wheels,” in NTC ’91 - National Telesystems Conference
Proceedings, 1991, pp. 323–328.

[9] A. Patel. (2024, oct) Omni-directional robots based on
the mecanum wheel. [Online]. Available: https://nhsjs.com/2024/
omni-directional-robots-based-on-the-mecanum-wheel/

[10] V. Alakshendra and S. S. Chiddarwar, “Adaptive robust control
of mecanum-wheeled mobile robot with uncertainties,” Nonlinear
Dynamics, vol. 87, no. 4, pp. 2147–2169, March 2017. [Online].
Available: https://doi.org/10.1007/s11071-016-3179-1

[11] M. Alfiyan and R. D. Puriyanto, “Mecanum 4 omni wheel directional
robot design system using pid method,” Journal of Fuzzy Systems
and Control, vol. 1, no. 1, p. 6–13, Mar. 2023. [Online]. Available:
https://ejournal.ptti.web.id/index.php/jfsc/article/view/27

V

https://ijcaonline.org/archives/volume113/number3/19804-1586/
https://www.sciencedirect.com/science/article/pii/S0167839608000770
https://www.mdpi.com/2079-9292/12/8/1754
https://nhsjs.com/2024/omni-directional-robots-based-on-the-mecanum-wheel/
https://nhsjs.com/2024/omni-directional-robots-based-on-the-mecanum-wheel/
https://doi.org/10.1007/s11071-016-3179-1
https://ejournal.ptti.web.id/index.php/jfsc/article/view/27

	Introduction
	Controlling the robot
	Equipment
	Kinematic Model
	Kinematics Theory

	Real Life Application
	Quantifying drift over time
	Measurement methodology
	Trajectory deviation formula

	Countering lateral drift
	Constant counter-steering
	Feedback-based Control Strategies

	Conclusion
	References

